【论文笔记】Out-of-Distribution Detection using Combination of Feature Uncertainty and Mahalanobis

论文:Fine-Grained Out-of-Distribution Detection of Medical Images using Combination of Feature Uncertainty and Mahalanobis Distance

参考:Fine-Grained Out-of-Distribution Detection of Medical Images using Combination of Feature Uncertainty and Mahalanobis Distance

一、摘要

自动医学图像分类方法经常面临属于训练期间未见过的疾病类别的分布外(OOD)测试样本,并错误地将这些样本预测为训练数据集中的类别之一,即分布 (ID)类,导致输出不可靠。因此,检测 OOD 样本对于模型的可靠预测至关重要。为了解决这个问题,我们提出了一种简单而有效的方法,通过逻辑回归将测试样本的多尺度特征的不确定性以及测试样本与训练类在特征空间中的分布之间的马哈拉诺比斯距离结合起来。我们在包含五种细粒度肺部状况的数据集上评估了我们的方法,并设计了三种 ID-OOD 分割。三个分割的平均实验结果表明,我们的方法在检测医学图像中的 OOD 样本方面优于现有方法。


二、设计的三种OOD划分

三种划分的示例

第一种即不相关,第二种不同类型,本文主要使用第三

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

wufen_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值