论文:Fine-Grained Out-of-Distribution Detection of Medical Images using Combination of Feature Uncertainty and Mahalanobis Distance
一、摘要
自动医学图像分类方法经常面临属于训练期间未见过的疾病类别的分布外(OOD)测试样本,并错误地将这些样本预测为训练数据集中的类别之一,即分布 (ID)类,导致输出不可靠。因此,检测 OOD 样本对于模型的可靠预测至关重要。为了解决这个问题,我们提出了一种简单而有效的方法,通过逻辑回归将测试样本的多尺度特征的不确定性以及测试样本与训练类在特征空间中的分布之间的马哈拉诺比斯距离结合起来。我们在包含五种细粒度肺部状况的数据集上评估了我们的方法,并设计了三种 ID-OOD 分割。三个分割的平均实验结果表明,我们的方法在检测医学图像中的 OOD 样本方面优于现有方法。
二、设计的三种OOD划分
第一种即不相关,第二种不同类型,本文主要使用第三