
注意力
文章平均质量分 95
wuling129
豫北某不著名学堂的修理地球/灵魂魔法师,门外汉兼乞丐一枚!工作极度平凡,家里地位边缘,丑男一个!鉴定完毕!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
【转载arXiv 2024】空间和通道协同注意力SCSA,即插即用,分类、检测、分割涨点!
实验结果显示,SCSA在不同检测器和模型大小上均优于其他最先进的注意力机制,例如在Faster R-CNN上,使用ResNet-50时,SCSA的平均精度(AP)提高了1.7%,使用ResNet-101时提高了1.3%。在视觉任务中,注意力机制通过增强表示学习,促进了更具区分性的特征学习,并广泛用于重新分配通道关系和空间依赖性。鉴于现有方法在处理复杂场景时的局限性,本文试图探索空间和通道注意力之间的协同效应,以期提出一种新的注意力机制,该机制能够更好地利用多语义信息,提高模型在各种视觉任务中的表现。转载 2024-10-30 15:46:18 · 7103 阅读 · 1 评论 -
[转载]用物理学革新Transformer注意力:「差分注意力」(differential attention)机制消除注意力噪声
随着近些年来NLP领域研究的不断深入,我们逐渐发现,Transformer架构中出现的幻觉问题,以及各种下游任务中的性能不足,都或多或少与注意力缺陷有关。虽然上下文窗口可以扩展,但是Transformer还是无法真正关注到有价值的信息。最近,微软研究院和清华大学的研究人员共同提出了一种新的模型架构——Differential Transformer,不仅保留了原始Transformer中的可扩展性,也能让模型更加关注上下文中与任务相关的关键信息。转载 2024-10-15 15:09:05 · 1685 阅读 · 1 评论 -
[转载]三种Transformer模型中的注意力机制介绍及Pytorch实现:从自注意力到因果自注意力
自注意力机制自2017年在开创性论文《Attention Is All You Need》中被提出以来,已成为最先进深度学习模型的核心,尤其是在自然语言处理(NLP)领域。考虑到其广泛应用,深入理解自注意力的运作机制变得尤为重要。图1:原始Transformer架构在深度学习中,"注意力"概念的引入最初是为了改进递归神经网络(RNNs)处理长序列或句子的能力。例如,在机器翻译任务中,逐字翻译通常无法捕捉语言的复杂语法和表达方式,导致翻译质量低下。转载 2024-10-13 11:35:21 · 280 阅读 · 0 评论