RSA加密算法的简单实现

本文介绍了RSA公钥加密算法的基本原理及其实现步骤。RSA算法由罗纳德·李维斯特、阿迪·萨莫尔和伦纳德·阿德曼于1977年提出,基于大素数乘积的因式分解难题。文章详细解释了选择素数p和q、计算欧拉函数φ(n)、选取公钥e和计算私钥d的过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

算法描述:

RSA公钥加密算法是1977年由罗纳德·李维斯特(Ron Rivest)、阿迪·萨莫尔(Adi Shamir)和伦纳德·阿德曼(Leonard Adleman)一起提出的。1987年首次公布,当时他们三人都在麻省理工学院工作。RSA就是他们三人姓氏开头字母拼在一起组成的。
RSA是目前最有影响力的公钥加密算法,它能够抵抗到目前为止已知的绝大多数密码攻击,已被ISO推荐为公钥数据加密标准。
今天只有短的RSA钥匙才可能被强力方式解破。到2008年为止,世界上还没有任何可靠的攻击RSA算法的方式。只要其钥匙的长度足够长,用RSA加密的信息实际上是不能被解破的。但在分布式计算和量子计算机理论日趋成熟的今天,RSA加密安全性受到了挑战。
RSA算法基于一个十分简单的数论事实:将两个大素数相乘十分容易,但是想要对其乘积进行因式分解却极其困难,因此可以将乘积公开作为加密密钥。

1、首先选取两个大素数p和q。
2、计算pq的乘积n,求出n的欧拉函数值φ(n)=(p-1)*(q-1)。
3、选取公钥e,满足1< e<φ(n),且gcd(φ(n),e)=1。
4、计算私钥d,d是e的模φ(n)逆元,即d=e^-1 mod φ(n)。
公开n和e,只要不知道pq就难以计算φ(n),也不知道私钥d。

加密: c=m^e mod n(m为明文)
解密: m=c^d mod n (c为密文)

代码实现:

#include<stdio.h>

int main()
{
    int p,q,e;
    int m;
    printf("请输入两个大素数p,q以及公钥e\n");
    while(~scanf("%d%d%d",&p,&q,&e))//输入两大素数p,q 以及公钥e
    {
        long long n=p*q;
        long long fn=(p-1)*(q-1);//欧拉函数值
        int d=1;
        //暴力计算出私钥d的值。d是e的模fn逆元
        while((d*e)%fn!=1)
        {
            d++;
        }
        printf("请输入明文\n");
        while(scanf("%d",&m)!=-1)//输入明文
        {
            int c=1;
            //计算 m^e%n的值,即密文
            for(int i=1; i<=e; i++)
            {
                c=(c*m)%n;
            }
            printf("%d\n",c);
        }
    }
    return 0;
}

杭电的1211就是RSA密码。http://acm.hdu.edu.cn/showproblem.php?pid=1211

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值