- 博客(11)
- 收藏
- 关注
原创 解决BindingException: Parameter ‘nurseId‘ not found. Available parameters are[nurse, pageable, param1]
dao层错误:解决ReflectionException: There is no getter for property named ‘XXXX‘所以可知,因为我传入的是实体类,所有参数中并没有nurseId,而应该具体到nurse.nurseId。有上图可知参数列表为[nurse, pageable, param1, param2]xml文件为:(仅一部分)
2025-07-07 11:25:03
152
原创 解决ReflectionException: There is no getter for property named ‘XXXX‘
发现错误,因为从dao到xml中时,MyBatis 会自动将参数包装在一个 Map 中,map为(param1,param1,param1,...),导致无法读取到对应的参数。检查xml中的sql相关语句,发现无错误。使用@Param将其绑定即可。有此可知,这是一个映射错误。
2025-07-04 11:37:34
129
原创 解决vscode运行Python 不显示结果的具体操作步骤
还要运行Python文件,目的的是输出重定向到终端。运行.py文件时,正常运行,但没有输出结果。由上图可知,无报错信息,但是就是没有输出。方法:找到终端—》新建终端。再次运行就可以出结果了。
2024-12-02 20:12:06
2745
4
原创 机器学习之SVM支持向量机
这意味着,只有这些支持向量的位置改变了,最终的超平面的位置才会改变。SVM的主要目的是在数据集中找到一个最优的分割平面(在二维空间中是一条线,在三维空间中是一个平面,更高维度中称为超平面),这个平面能够最好地分隔不同类别的数据。对与线性不可分的的数据集在低纬度上可能是不可分的,而将它们投影到高维度时,就成了可以分开的,但高纬度的数据往往计算量巨大,耗费时间长,这时我们就可以引用核函数。支持向量的特性:模型的复杂度取决于支持向量的数量,而不是整个数据集的大小,这有助于减少模型参数的数量。
2024-06-11 16:51:24
935
原创 机器学习之Logistic回归(逻辑回归)
在现代科技中,机器学习已经成为不可或缺的一部分。从语音识别到图像分类,机器学习算法帮助我们解决了许多复杂的问题。在这些算法中,逻辑回归作为一种基础且强大的分类工具,被广泛应用于各种领域。
2024-05-28 09:28:30
1249
2
原创 机器学习之朴素贝叶斯+代码实战
朴素贝叶斯算法是一种基于贝叶斯定理和特征条件独立性假设的分类算法。它是由英国数学家托马斯·贝叶斯提出的。该算法常用于文本分类、垃圾邮件过滤、情感分析等领域。朴素贝叶斯算法的核心思想是通过计算给定特征条件下目标类别的概率来进行分类。它基于特征条件独立性假设,即假设给定一个目标类别时,各个特征之间是相互独立的。这个假设简化了模型的计算,同时也带来了一定的精度损失。具体来说,朴素贝叶斯算法通过计算每个特征在不同类别下的条件概率,并结合各特征的先验概率,最终得到后验概率最大的类别作为分类结果。
2024-05-13 22:07:59
1129
原创 机器学习-决策树
本篇参考原文链接:https://blog.csdn.net/jiaoyangwm/article/details/79525237。
2024-04-30 09:15:25
750
1
原创 常见的分类模型评估指标(ROC曲线和PR曲线)
真阳性率是指正确预测为正类别的样本占所有实际正类别样本的比例,假阳性率是指错误预测为正类别的样本占所有实际负类别样本的比例。F1分数越高,表示模型的精确率和召回率均较高。(2)P-R曲线则主要关注的是正例(Positive)的预测准确率(Precision)和召回率(Recall)之间的权衡。例如,混淆矩阵可以提供有关模型的真阳性、真阴性、假阳性和假阴性的信息,从而帮助我们理解模型的分类能力和误差类型。增加曲线的面积:由于较小的K值通常可以提高模型的灵敏度和特异度,ROC曲线的面积(AUC值)可能会增加。
2024-04-15 22:00:54
1153
1
原创 问题:打开命令提示符就闪退|卸载Anaconda后打开命令提示符闪退
(4)没有的话新建一个名为Autorun的键即可。(2)修改其中的Autorun的值为空。2.输入regedit,打开注册表。已经可以打开命令提示符了。1.使用win+R打开运行。
2024-03-31 23:18:00
1240
6
原创 KNN算法 (K最近邻算法)(K-Nearest Neighbors)
(1)计算已知类别数据集中的点与当前点之间的距离(2)按照距离递增次序排序(3)选取与当前点距离最小的k个点(4)确定前k个点所在 的类别的出现的频率(5)返回前k个点出现频率最高的类别作为当前点的类别。
2024-03-31 20:20:15
593
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人