自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(7)
  • 收藏
  • 关注

原创 Matplotlib3.10.5版本plt.plot内核崩溃的解决办法

在使用 Matplotlib 3.10.5 版本运行 plt.plot() 绘图时,可能会遇到 Python 内核意外崩溃(Kernel Crash)的问题。此问题通常表现为程序无预警退出或 Jupyter Notebook/Lab 内核重启。

2025-08-19 10:51:52 105

原创 LSTM结构的理解

LSTM门控机制通过遗忘门、输入门、候选记忆和输出门控制信息流动。输入词嵌入后,各门独立计算并更新细胞状态和隐藏状态。示例展示了"She is from China"序列的处理过程,详细说明了向量计算和状态更新机制。预测层训练采用交叉熵损失,通过反向传播调整权重。计算示例演示了词表概率预测和梯度传播过程,包括logits计算、softmax概率和参数梯度更新。整个系统通过门控机制实现长期依赖建模,有效解决了传统RNN的梯度消失问题。

2025-08-07 16:40:06 256

原创 解决ImportError: cannot import name ‘AutoML‘ from ‘flaml‘

这个命令会额外安装 Jupyter 相关的可视化依赖,确保 AutoML 在 Notebook 中正常运行。

2025-08-02 17:57:25 116

原创 从最大似然到交叉熵

摘要: 交叉熵损失函数在分类任务中广泛应用,其合理性可从最大似然估计和信息论两个角度解释。从最大似然出发,最小化负对数似然(NLL)等价于最大化模型预测概率;在one-hot标签下,NLL与交叉熵等价。信息论中,交叉熵衡量用预测分布编码真实分布的信息量,可分解为真实分布的熵与KL散度之和。KL散度非负性表明预测偏离真实时损失增大,即使正确类概率最高,若错误类概率过高仍会显著增加交叉熵。交叉熵通过惩罚整体分布偏差,促使模型更精准聚焦正确类别。

2025-07-30 16:43:36 597

原创 卷积神经网络(CNN)的反向传播数学推导

本文详细推导了卷积神经网络(CNN)的反向传播过程。

2025-07-24 01:56:56 898

原创 解决Pandas读取CSV错误 Error tokenizing data. C error: Expected * fields in line *, saw *

原因就是最后一行的列数多了一列。

2024-08-14 17:04:17 7748

原创 我的机器学习笔记1——KNN分类

用最大最小归一化的时候有点问题 x_normalized = [x/(x_diff) for x in x_val] 其中 x 应该要减去「最小值」的,可以通过 sklearn.preprocessing.MinMaxScaler 快速实现。这里用MinMaxScaler的时候要小心,需要用训练集的数据对测试集的数据做归一化。然后在用pcolormesh的时候,有两个方法,要么用np.repeat,要么再用遍meshgrid。问题2:数据的归一化问题。问题3:zip函数的使用。问题4:测试集的数据归一化。

2023-09-03 12:39:02 72

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除