- 博客(24)
- 收藏
- 关注
原创 数学建模_TOPSIS优劣解
先根据上一个博客熵权法中介绍的指标正向化处理和标准化方法处理数据(用标准化消除量纲的影响)再按照下图在矩阵ZZZ的每一列中分别选最大和最小的数据分别放入ZZ+Z和Z−Z-Z−向量第iii个对象就是第iii行。
2025-07-01 19:57:54
293
原创 数学建模_模糊评价法
根据数学建模课程链接整理而成“模糊”的指标:不明确的界限下面是针对记法的一个例子下图:其中中间的梯形分布最常用到下图中左侧的图表示极小型问题、中间的图表示中间型问题,右侧的图表示极大型问题下图确定具体隶属函数:step1.根据上图模型以及问题类型确定选用何种隶属函数step2.根据确定的某个集合边界确定参数aaa,为方便计算取β\betaβstep3.根据集合的边界解出α\alphaα(注意函数中的aaa和α\alphaα的区别)例解:15种速率,每种速率都判断320次,判断
2025-07-01 16:46:56
543
原创 MATLAB基本语法
运算符使用默认的间距 1,但是您可以指定您自己的间距,如下所示。x =使用 MATLAB 关键字 end 作为行或列索引来引用最后一个元素。可以将算术运算与关键字 end 结合使用。
2025-06-07 20:05:21
858
原创 Towards Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning论文笔记
就是数据有结构,在"multi-view"的情况下集成独立训练的神经网络可以提高测试准确度,这种优越的test accuracy可以蒸馏进一个单独的模型,通过训练这个单独的模型去匹配集成架构的输出而不是匹配真实标签。
2025-03-29 17:42:39
1080
1
原创 A Survey on Mixture of Experts论文笔记
G(x,theta)算是权重吧,来自门控输出的softmax,G乘上不同专家层的输出得到最终输出。在训练稀疏门控混合专家层的时候加入噪音是一个流行的策略,可以在专家之间探索,增加训练稳定性。MoE利用一组专业模型以及门控机制去多样化地选择合适的专家网络去处理给定的输入。模型不同的部分就是专家,他们在数据不同的任务或者方面各有专长。导致工作量不平衡,有的专家经常被用,有的专家不怎么用。门控网络的任务是带着input来到合适的专家网络。每个专家网络通常用线性-RELU-线性的网络。图片搭配公式食用更佳。
2025-03-29 16:11:36
646
1
原创 CTR论文思想一句话总结
并行结构:提出Compressed Interaction Network(CIN)直接学习有边界的显式特征交互,Xi和X0做哈达玛积&sum pooling+MLP学习抽象的低阶和高阶隐式特征交互。1.Gated Cross Network(GCN)网络显式捕捉高阶特征交互(有边界的交互)&用信息门(本质线性变换)在每一级多样地过滤重要的交互------更有可解释性。我的理解是特征自己和自己的操作就是显式特征交互;并行结构:每一层就是线性模型+residual,显式特征交互,学习有界限的特征交互。
2024-12-04 10:20:04
1122
原创 CF学习笔记
协同过滤下的两个方向:Memory-based 和 Model-based,见下图Memory-based:又分为User-based和Item-basednearest-neighbor or user-based collaborative filtering:找到目标用户的邻居,根据他们相似的品味为目标用户推荐商品,Item-based:本论文介绍Model-based:通过建立模型。
2024-11-20 20:40:01
1102
原创 GCN:SEMI-SUPERVISED CLASSIFICATION WITH GRAPH CONVOLUTIONAL NETWORKS学习笔记
Δ=D−A,其中A是邻接矩阵(只考虑无向图,邻接矩阵是对称矩阵),D是度矩阵(只在对角线上有元素,为邻居个数,也是对称矩阵)----------拉普拉斯矩阵也是对称矩阵。这个方程基于假设:相邻的节点很可能有相同的标签-------但是作者又指出这种假设可能限制模型的建模能力,因为边不一定包含(编码)了节点的相似性而是可能包含其他的信息。解决图节点分类问题(只有一小部分节点有标签,剩余节点的标签需要通过图的结构学习)------节点层面。其实就是卷积操作--------加权求和,相乘再求sum。
2024-11-18 22:02:07
320
原创 CS224W: Machine Learning with Graphs学习笔记01Introduction
图:描述和分析有联系和交互的实体图有丰富的有联系的结构-------直接建模联系可以取得更好的效果图神经网络困难的原因-------图大小任意,结构复杂。
2024-11-12 21:01:05
163
原创 LightGCN: Simplifying and Powering Graph Convolution Network for Recommendation论文学习笔记
用户和商品最后表示的内积作为推荐生产的排名分数。
2024-10-11 20:10:19
2276
原创 Graph Convolution Network(GCN)学习记录
图神经网络的层数是计算图的层数而不是神经网络(黑/灰色盒子)的层数,神经网络的层数可以很大(128、256、512......),但是计算图的层数不必过大,根据“六度空间理论”,6层的计算图就可以遍历图中所有节点。表示平均:D矩阵是对角矩阵,对角线上的元素是当前节点邻居的个数(度degree),做除法就是对D求逆,那么D逆的对角线上每一个元素都是原来的倒数,方程表示为。每个数值怎么得到的:1/(当前节点的度*当前邻居节点的度)使度小的邻居权重上升,度高的邻居权重减小,这样自己度度和邻居的度都考虑到了。
2024-10-04 16:17:44
1673
原创 A Gentle Introduction to Graph Neural Networks图神经网络GNN学习笔记
graph attention networks:前面的pooling是简单sum,但是也可以像卷积一样有权重再加和,但是卷积每一个窗口内不同位置的权重是不一样的(固定位置固定权重),而图上顶点的位置不固定-->解决方法:类似注意力机制,权重取决于两个顶点向量之间的关系(比如点乘后softmax),而不是位置。缺点:没有在GNN中放入图的结构信息,只是利用了属性-->解决方法:信息传递,类似前述pooling,eg.输入的顶点向量改为自己与相连的顶点向量的加和sum,再放入MLP得到更新结果,如下所示。
2024-10-01 22:15:44
813
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人