标准相干态:基础数学与应用
1. 位移算子与Weyl - Heisenberg群
位移算子 (D(z)) 由于存在相位因子,不能简单视为平移的表示。两个连续位移的非对易性体现为:
(D(z_1)D(z_2) = e^{2i z_2 \wedge z_1}D(z_2)D(z_1))
这是正则对易规则 ([Q, P] = i\mathrm{Id}) 的积分形式。这里 (z \to D(z)) 是阿贝尔群 (C) 的投影表示,因为两个算子 (D(z_1)) 和 (D(z_2)) 组合会产生相位因子。
Weyl - Heisenberg群 (W \simeq R \sim C) ,其元素 (g = (s, z) = (s, q, p)) 对应李代数 (W_m) 中的元素 (X = is\mathrm{Id} + z a^{\dagger} - \overline{z} a) 。群法则为:
((s_1, z_1)(s_2, z_2) = (s_1 + s_2 - z_1 \wedge z_2, z_1 + z_2))
中性元素是 ((0, 0, 0)) ,逆元素是 ((s, z)^{-1} = (-s, -z)) 。
2. 相干态在信号分析中的应用
2.1 非真空态的迁移
让 (D(z)) 作用于任意选择的态 (|\psi\rangle \in H) ,定义 (|z\rangle_{\psi} \equiv D(z)|\psi\rangle) 。在位置表示中,这些态为 (\langle\delta x|z\rangle_{\psi} \equiv \psi_z(x) = e^{-\frac{i}{2}