
计算机视觉
文章平均质量分 74
北极与幽蓝
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Transformer入门笔记-自用
Transformer的提出解决了两个问题:首先它使用了Attention机制,将序列中的任意两个位置之间的距离缩小为一个常量;其次它不是类似RNN的顺序结构,因此具有更好的并行性,符合现有的GPU框架。Decoder与encoder有三大主要的不同:Decoder SubLayer-1使用的是“Masked” Multi-Headed Attention机制,防止为了模型看到要预测的数据,防止泄露。SubLayer-2是一个Encoder-Decoder Multi...原创 2022-05-14 23:40:53 · 373 阅读 · 0 评论 -
3D目标检测入门论文: CaDDN, DETR3D
[CVPR2021] Projecting Your View Attentively: Monocular Road Scene Layout Estimation via Cross-view Transformation概要transform the front-view monocular image to the top-view road layout提出cross-view transformation module,利用视图之间的关系和cycle consistency加强视图变换原创 2022-05-14 23:37:35 · 827 阅读 · 0 评论 -
BEVFormer: Learning Bird’s-Eye-View Representation from Multi-Camera Images via Spatiotemporal论文阅读
一、概要提出新框架BEVFormer,用spatiotemporal transformer学习统一的BEV表示,来支持多个自动驾驶感知任务。空间上,用cross-attention让每个BEV query从roi across camera views中提取空间特征;时间上,用 self-attention循环融合历史BEV信息。9.0 points higher than previous best arts on nuScenes test set。二、方法1. Spatial Cro原创 2022-05-14 23:21:41 · 379 阅读 · 1 评论 -
基于鸟瞰图的三维目标检测
M2BEV: Multi-Camera Joint 3D Detection and Segmentation with Unified Bird’s-Eye View Representation概要:propose a unified framework to transform multi-camera images to a Bird’s-EyeView (BEV) representation for multi-task AV perception, including 3D obje原创 2022-05-14 23:17:06 · 920 阅读 · 0 评论 -
基础知识记录
增量学习灾难性遗忘:第一,由于每次对模型的参数进行更新时,只能用大量的新类别的样本和少量的旧类别的样本,因此会出现新旧类别数据量不均衡的问题,导致模型在更新完成后,更倾向于将样本预测为新增加的类别;第二,由于只能保存有限数量的旧类别样本,这些旧类别的样本不一定能够覆盖足够丰富的变化模式,因此随着模型的更新,一些罕见的变化模式可能会被遗忘,导致新的模型在遇到一些旧类别的样本的时候,不能正确地识别。增量学习任务分为,数据增量和类别增量。数据增量过程中,增量任务和原始任务之间没有新类别出现,两者具...原创 2022-05-14 23:12:40 · 735 阅读 · 0 评论