Python实现聚类K-means算法

本文内容、数据参考周志华《机器学习》,代码部分为个人实现,如有错误还请指出。
K-means(K均值)算法是最简单的一种聚类算法,它期望最小化平方误差
E=∑i=1k∑x∈Ci∣∣x−μi∣∣22E=\sum\limits_{i=1}^k\sum\limits_{x\in C_i}||\pmb x-\pmb\mu_i||_2^2E=i=1kxCixxxμμμi22
其中μi=1∣Ci∣∑x∈Cix\pmb\mu_i=\frac{1}{|C_i|}\sum_{x \in C_i}\pmb xμμμi=Ci1xCixxx是簇(cluster)CiC_iCi的均值向量,∣∣x−μi∣∣2||\pmb x-\pmb\mu_i||_2xxxμμμi2即一般意义下向量的模长。
K-means算法的一般步骤如下:

输入:样本集D={ x1,x2,...,xm};D=\{\pmb x_1,\pmb x_2,...,\pmb x_m\};D={ xxx1,xxx2,...,x

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值