MapReduce如何解决数据倾斜问题

数据倾斜是指在MapReduce中,由于key分布不均导致部分reduce处理数据量过大,影响任务执行效率。本文介绍了数据倾斜的产生原因,分析了数据倾斜与业务逻辑和数据量的关系,并提出四种处理数据倾斜的方法,包括参数调优、key改造、group操作和map join。同时,建议使用combiner函数和局部+全局聚合策略以减轻数据倾斜的影响。

前言:数据倾斜是日常大数据查询中隐形的一个BUG,遇不到它时你觉得数据倾斜也就是书本博客上的一个无病呻吟的偶然案例,但当你遇到它是你就会懊悔当初怎么不多了解一下这个赫赫有名的事故。

当然你和数据倾斜的缘分深浅还是看你公司的业务逻辑和数据量有没有步入数据倾斜的领地。

 

说明:关于数据倾斜的产生原因我将结合 map 和 reduce 阶段中的 shuffle 来讲解,若是对 shuffle 有所忘记需要温故的请到MapReduce解决数据倾斜的问题 进行相关了解。另本人能力有限,仅根据自己所了解的知识回答,若有误处或不足之处望不吝指出。

 

一、什么是数据倾斜以及数据倾斜是怎么产生的?

 

简单来说数据倾斜就是数据的key 的分化严重不均,造成一部分数据很多,一部分数据很少的局面。

举个 word count 的入门例子,它的map 阶段就是形成 (“aaa”,1)的形式,然后在reduce 阶段进行 value 相加,得出 “aaa” 出现的次数。若进行 word count 的文本有100G,其中 80G 全部是 “aaa” 剩下 20G 是其余单词,那就会形成 80G 的数据量交给一个 reduce 进行相加,其余 20G 根据 key 不同分散到不同 reduce 进行相加的情况。如此就造成了数据倾斜,临床反应就是 reduce 跑到 99%然后一直在原地等着 那80G 的reduce 跑完。

 

简化了的 shuffle 图就是这样。

 

 

 

这样就能清楚看

MapReduce数据倾斜是指在MapReduce任务中,某些Map任务处理数据量远远超过其他Map任务,导致整个任务的效率降低。数据倾斜问题MapReduce中常见的性能瓶颈之一。以下是解决MapReduce数据倾斜问题的几种方法: 1. 均匀划分数据:在MapReduce任务中,数据均匀划分是防止数据倾斜的最有效的方法之一。可以通过对数据进行采样,来确定数据均匀划分的划分点。 2. Combiner函数:Combiner函数可以在Map阶段对数据进行合并处理,减少Map输出数据量,从而降低Reduce任务的负担。可以在Combiner函数中对于一些key进行合并处理,减少数据倾斜。 3. 调整Reduce任务数量:当Reduce任务的数量过少时,会导致某些Reduce任务的数据处理量过大,从而产生数据倾斜。可以通过增加Reduce任务的数量来解决这个问题。 4. 增加Map任务数量:增加Map任务的数量,可以将数据均匀地分散到更多的Map任务中去,从而减少数据倾斜。 5. 动态调整Map任务输入数据:可以根据Map任务处理数据量来动态调整数据的输入,将处理量较大的数据均匀分散到多个Map任务中。可以通过自定义InputFormat来实现这个功能。 6. 使用随机数进行分桶:将数据随机分配到多个桶中,通过增加桶的数量来增加Map任务的数量,从而将数据均匀分散到多个Map任务中。这个方法需要保证随机数分配的均匀性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值