jiebaR中文分词,从入门到喜欢

本文介绍了jiebaR包在中文分词中的应用,包括分词、添加用户自定义词、删除停用词、计算词频、词性标注和提取关键字。详细讲解了worker函数及其参数,以及如何使用new_user_word函数和词库添加自定义词。同时展示了如何删除停用词和利用freq函数计算词频,最后提到了词性标注和提取关键字的功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

之前,我写过一篇关于Rwordseg包的分词,链接为:http://blog.csdn.net/wzgl__wh/article/details/52528925

今天,我主要想谈谈自己对jiebaR这个包。现在我也比较推荐使用jiebaR这个包,原因也大概总结了一下几点。

 

   JiebaR

   Rwordseg

函数数量

   51个

 9个

更新速度

快,cran最新版更新于2016-09-28

慢,R-Forge最新版更新于2013-12-15

安装难度

   容易

     难,需要安装java。

分词引擎

   多

只有一种(隐马尔科夫模型)

(个人观点,还望大家在留言区补充)


一、分词

首先,我们来看一下jiebaR里面最重要的一个函数worker函数,通过它,我们可以设置一些分词类型,用户词典,停用词等等。函数原型为:

worker(type = "mix", dict = DICTPATH, hmm = HMMPATH, user = USERPATH,
  idf = IDFPATH, stop_word = STOPPATH, write = T, qmax = 20, topn = 5,
  encoding = "UTF-8", detect = T, symbol = F, lines = 1e+05,
  output = NULL, bylines = F, user_weight = "max")


现在来说说每个参数的作用。

参数

作用

type

指分词引擎类型,这个包包括mix, mp, hmm, full, query, tag, simhash, keyword,分别指混合模型,支持最大概率,隐马尔科夫模型,全模式,索引模型,词性标注,文本Simhash相似度比较,关键字提取。     

dict

词库路径,默认为DICTPATH.

hmm

用来指定隐马尔可夫模型的路径,默认值为DICTPATH,当然也可以指定其他分词引擎

user

用户自定义的词库

idf

用来指定逆文本频率指数路径,默认为DICTPATH,也可以用于simhash和keyword分词引擎

stop_word

用来指定停用词的路径

qmax

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值