Video Analysis 相关领域解读之Temporal Action Detection(时序行为检测)

本文探讨了Temporal Action Detection(时序行为检测)的任务特点和难点,包括其在未分割视频中的行为片段定位和分类。文章分析了与Action Recognition的关系,难点在于行为边界的模糊性和时序信息的必要性。介绍了数据库THUMOS 2014、MEXaction2和ActivityNet,并概述了2016年相关研究进展,如End-to-end learning、Pyramid of Score Distribution Features和Multi-Stage CNNs的方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文投稿于极视角公众号,链接为文章链接.

也欢迎大家关注我的知乎专栏CV论文笔记及其他

上一篇笔记介绍了 Action Recognition 领域的研究进展。Action Recognition主要是用于给分割好的视频片段分类,但实际中大部分视频都是未分割的长视频。所以这就引出了今天要介绍的领域:Temporal Action Detection(或者叫Temporal Action Localization,意思相同)。过去半年时间我也一直在做这个方向,投了两篇论文,如果能中的话应该会写笔记介绍一下~

任务特点及分析

任务目的

给定一段未分割的长视频,算法需要检测视频中的行为片段(action instance),包括其开始时间、结束时间以及类别。一段视频中可能包含一个或多个行为片段。

任务特点与难点
  • action recognition与temporal action detection之间的关系同 image classfication与 object detection之间的关系非常像。基于image classification问题,发展出了许多强大的网络模型(比如ResNet,VGGNet等),这些模型在object detection的方法中起到了很大的作用。同样,action recognition的相关模型(如2stream,C3D, iDT等)也被广泛的用在temporal action detection的方法中。
  • 由于temporal action detection和object detection之
评论 12
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值