论文:https://arxiv.org/abs/2109.07161
代码:https://github.com/advimman/lama
Abstract
现代图像修复往往难以处理大面积的缺失、复杂的几何结构和高分辨率图像,我们发现,造成这种情况的主要原因之一是在修复网络和损失函数中都缺乏有效的感受野( lack of an effective receptive field in both the inpainting network and the loss function)。为了缓解这个问题,我们提出了一种新的方法,称为大型掩模修复(LaMa)。
LaMa特点:
1、使用具有图像宽的感受野的快速傅里叶卷积fast Fourier convolutions (FFCs);
2、高感受野感知损失 (a high receptive field perceptual loss);
3、大面积训练masl。
PS 下图就是一张面积比较大的mask区域:
Introduction
大的有效感受野[29]对于理解图