【深度学习】【Inpainting】LaMa: Resolution-robust Large Mask Inpainting with Fourier Convolutions

论文:https://arxiv.org/abs/2109.07161
代码:https://github.com/advimman/lama

Abstract

现代图像修复往往难以处理大面积的缺失、复杂的几何结构和高分辨率图像,我们发现,造成这种情况的主要原因之一是在修复网络和损失函数中都缺乏有效的感受野( lack of an effective receptive field in both the inpainting network and the loss function)。为了缓解这个问题,我们提出了一种新的方法,称为大型掩模修复(LaMa)。
LaMa特点:
1、使用具有图像宽的感受野的快速傅里叶卷积fast Fourier convolutions (FFCs);
2、高感受野感知损失 (a high receptive field perceptual loss);
3、大面积训练masl。

PS 下图就是一张面积比较大的mask区域:
在这里插入图片描述

Introduction

大的有效感受野[29]对于理解图

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值