10、联邦学习中的客户端选择框架解析

联邦学习中的客户端选择框架解析

1. 垂直联邦学习(VFL)

1.1 基本概念

垂直联邦学习(VFL)常用于处理来自不同目标和特征的企业数据集。它也被称为特征分区联邦学习,能够利用不同组织维护的异构特征来构建更强大的机器学习模型。在 VFL 框架下,数学表示为:
[
X_i \neq X_j, Y_i \neq Y_j, I_i = I_j, \forall D_i, D_j, i \neq j
]
其中,$X$ 和 $Y$ 分别代表特征空间和标签空间,$I$ 代表 ID 空间,矩阵 $D$ 代表不同客户端和参与方持有的数据。

1.2 架构与参与方

VFL 的架构与水平联邦学习(HFL)略有不同,主要是因为参与方类型不同。假设企业 A 和 B 都有兴趣联合运行机器学习算法(MLA),且各自拥有敏感数据,其中企业 B 已对联合模型执行预测任务所需的数据进行了标注。由于隐私问题,A 和 B 不能直接交换数据,因此在训练过程中会引入第三方协作者(C),可以是政府组织或安全节点(如英特尔软件防护扩展)。

1.3 训练过程

VFL 可分为两部分:加密实体对齐和加密模型训练。
- 加密实体对齐 :由于公司 A 和 B 的用户群体不同,系统采用基于加密的用户 ID 对齐技术,在不暴露彼此数据的情况下确认双方身份。
- 加密模型训练 :可进一步细分为 6 个步骤:
1. C 创建加密对,并将公钥发送给 A 和 B。
2. A 和 B 加密并交换用于损失和梯度计算的中间结果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值