30、因果建模与反事实解释在多领域的应用及威胁应对

因果建模与反事实解释在多领域的应用及威胁应对

1. 因果推断方法

在因果推断中,有两种重要的方法值得关注。一种是基于临近临界值骑手的假设,当骑手非常接近临界值时,在相关混杂变量(影响自变量和因变量的第三变量)方面彼此相似。在此假设下,观察高峰定价引入点处行程请求率的显著不连续性,可表明超过该点提高价格对请求率有因果影响。

另一种方法是分析候选因果事件前后的时间序列数据结果,即中断时间序列设计。该方法旨在预测事件发生瞬间时间序列的任何变化。用于因果推断的时间序列分析最流行的方法有合成控制法和贝叶斯结构时间序列法。谷歌提供的 Causal Impact 包就是用于贝叶斯结构时间序列分析的流行库之一。

2. 供应链中的因果建模应用

2.1 供应链公平性与库存分配

在零售的供应链环节,公平性至关重要。当零售商面临库存短缺和过剩的情况时,作为数据科学和机器学习专家,需要监督库存优化策略。公平库存分配基于实际需求和现有库存容量,影响公平库存满足的因素包括:
- 零售商的公平库存分配,如追求相同利润、相同填充率或在处理需求不匹配时平均分配供应。这由比例分配政策(在库存不足或稀缺时最佳)和过剩库存平均分配(库存过剩时使用)来管理。
- 在为多个零售商服务的集成供应链网络中,考虑一个共同的库存池,总库存分配到零售商层面,总成本在多个零售商地点分配。库存补充和履行订单到达仓库,在以下场景中会纳入公平性约束:
- 满足行业公平感知,包括公平定价和公平工资等要素。
- 零售商总需求超过可用供应。
- 多个供应商的总供应超过需求。
- 多个零售商从同一供应商处接收库存。
- 根据市场需求在

KDD2021是国际上知名的数据挖掘和知识发现领域的会议,而本次会议中的一篇文章题为《反事实解释及在可解释人工智能中的应用》。这篇文章主要讨论了反事实解释的概念以及其在可解释人工智能(XAI)中的应用。 首先,文章介绍了反事实解释的概念。反事实解释是指对于一个已知的事件或观察结果,通过推理和分析来揭示出如果某些条件或因素不同,将会产生不同的结果。它是一种通过对现实情况进行修改或替代来推断新结果的方法。 然后,文章探讨了反事实解释在可解释人工智能中的应用。可解释人工智能旨在使机器学习模型的决策过程能够被人理解和解释。在这方面,反事实解释可以帮助我们理解模型的决策过程以及预测结果。通过揭示如果某些条件不同,模型将做出不同的决策,我们可以获得关于模型行为的更深入理解。 最后,文章讨论了如何将反事实解释应用于可解释人工智能中。作者提出了一种基于因果推理的反事实解释方法,该方法将因果关系和反事实推理相结合,以在可解释人工智能中提供更准确和可靠的解释。作者通过实验证明了该方法的有效性,并展示了其在实际问题中的应用潜力。 总的来说,这篇文章介绍了反事实解释的概念及其在可解释人工智能中的应用。通过使用反事实解释,我们可以更好地理解机器学习模型的决策过程,并提供更准确和可靠的解释。这对于推动可解释人工智能的研究和发展具有重要意义。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值