因果建模与反事实解释在多领域的应用及威胁应对
1. 因果推断方法
在因果推断中,有两种重要的方法值得关注。一种是基于临近临界值骑手的假设,当骑手非常接近临界值时,在相关混杂变量(影响自变量和因变量的第三变量)方面彼此相似。在此假设下,观察高峰定价引入点处行程请求率的显著不连续性,可表明超过该点提高价格对请求率有因果影响。
另一种方法是分析候选因果事件前后的时间序列数据结果,即中断时间序列设计。该方法旨在预测事件发生瞬间时间序列的任何变化。用于因果推断的时间序列分析最流行的方法有合成控制法和贝叶斯结构时间序列法。谷歌提供的 Causal Impact 包就是用于贝叶斯结构时间序列分析的流行库之一。
2. 供应链中的因果建模应用
2.1 供应链公平性与库存分配
在零售的供应链环节,公平性至关重要。当零售商面临库存短缺和过剩的情况时,作为数据科学和机器学习专家,需要监督库存优化策略。公平库存分配基于实际需求和现有库存容量,影响公平库存满足的因素包括:
- 零售商的公平库存分配,如追求相同利润、相同填充率或在处理需求不匹配时平均分配供应。这由比例分配政策(在库存不足或稀缺时最佳)和过剩库存平均分配(库存过剩时使用)来管理。
- 在为多个零售商服务的集成供应链网络中,考虑一个共同的库存池,总库存分配到零售商层面,总成本在多个零售商地点分配。库存补充和履行订单到达仓库,在以下场景中会纳入公平性约束:
- 满足行业公平感知,包括公平定价和公平工资等要素。
- 零售商总需求超过可用供应。
- 多个供应商的总供应超过需求。
- 多个零售商从同一供应商处接收库存。
- 根据市场需求在