404Feels
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
51、深度学习与PyTorch:从基础到实践
本文详细介绍了深度学习的基础知识及其在PyTorch框架中的实现方法。从PyTorch的简介、深度学习的基本概念,到模型设计、训练与评估,再到高级技术如数据增强、分布式训练和模型解释,全面覆盖了深度学习的关键内容。同时,还展示了在医疗图像分析中的实际应用案例,帮助读者从理论走向实践。无论对于初学者还是有一定经验的开发者,本文都具有较高的参考价值。原创 2025-09-04 06:38:47 · 6 阅读 · 0 评论 -
50、PyTorch模型部署全攻略
本文详细介绍了PyTorch模型部署的多种方式,包括C++推理、Android移动部署以及企业级服务。同时探讨了模型优化的具体策略,如蒸馏和量化,以提升模型效率。最后展望了新兴技术的发展趋势,并提供了不同部署方式的操作要点和流程总结,适合希望将深度学习模型应用于不同场景的开发者参考。原创 2025-09-03 13:02:28 · 7 阅读 · 0 评论 -
49、PyTorch模型生产部署与C++应用实践
本文介绍了如何将PyTorch模型部署到生产环境,重点讨论了JIT编译模块的训练与推理设置,以及如何在C++中运行和构建模型。通过示例代码详细讲解了模型的跟踪与脚本化处理方法,以及C++中模型推理的实现步骤和注意事项。此外,还探讨了数据处理兼容性、模块定义同步等常见问题,并展望了未来PyTorch模型部署的发展趋势。原创 2025-09-02 14:52:30 · 5 阅读 · 0 评论 -
48、模型部署与 PyTorch JIT 交互指南
本文详细介绍了如何将训练好的模型部署到生产环境中,重点探讨了使用 PyTorch JIT 与 ONNX 的方法。内容涵盖了模型导出至 ONNX、PyTorch 的跟踪与脚本化技术、与 PyTorch JIT 的交互以及性能优化等关键主题。此外,还对比了跟踪和脚本化的优缺点,并提供了实际应用中的注意事项和建议,旨在帮助开发者高效实现模型的生产化部署。原创 2025-09-01 11:00:04 · 3 阅读 · 0 评论 -
47、模型生产部署与导出指南
本文介绍了深度学习模型的生产部署与导出指南,涵盖模型部署的基础知识、期望特性及优化方法。重点讨论了通过 Sanic 框架实现请求批处理,以及使用 ONNX 实现跨框架模型互操作性的步骤。同时,还涉及模型导出的必要性及多种实现方式,如 JIT、libtorch 和 Torch Mobile。通过这些方法,可以提升模型的部署效率和运行性能,适应不同应用场景的需求。原创 2025-08-31 11:42:33 · 3 阅读 · 0 评论 -
46、肺结节分析与模型部署:从研究到生产的全流程指南
本文详细探讨了肺结节分析与模型部署的全流程,涵盖了从研究到生产的关键步骤。在肺结节分析部分,提出了包括对比学习、数据优化、多任务训练等提升模型性能的方法。在模型部署方面,介绍了使用Flask、Sanic搭建网络服务、导出ONNX模型、C++集成以及移动设备部署等多种方式。同时总结了模型训练与评估的关键要点,并提供了实践练习建议,旨在帮助读者实现从理论到实际应用的跨越。原创 2025-08-30 13:59:08 · 3 阅读 · 0 评论 -
45、端到端结节分析及后续优化方向
本文详细探讨了端到端结节分析模型的训练、优化及后续改进方向。通过在TensorBoard中添加更多输出(如直方图和ROC曲线),帮助更直观地理解模型训练过程。文章还分析了模型的诊断结果,指出其优势与不足,并讨论了训练集、验证集和测试集的合理划分问题。为了提升模型性能,文中提出了多种优化策略,包括防止过拟合的方法、经典正则化、数据增强、集成学习、多任务学习、半监督学习和自监督学习等,并给出了优化流程图和方法对比表,为实际应用提供了清晰的指导。原创 2025-08-29 15:42:44 · 4 阅读 · 0 评论 -
44、端到端结节分析及后续方向
本文探讨了端到端的结节分析方法,包括结节检测、定量验证、恶性程度预测以及模型微调策略。通过混淆矩阵评估检测效果,并利用LIDC-IDRI数据集获取恶性信息。基于直径分类的基线模型与微调后的深度学习模型进行对比,分析不同微调策略的效果,并提出进一步改进方向,如正则化、学习率调整和数据增强,旨在提高结节恶性检测的准确性与模型泛化能力。原创 2025-08-28 09:39:48 · 1 阅读 · 0 评论 -
43、端到端肺结节分析:从数据验证到模型融合
本博客详细介绍了端到端肺结节分析的全过程,从数据验证、模型训练到最终的诊断输出。重点讨论了验证集独立性的重要性,避免数据泄露的最佳实践,并结合分割模型和分类模型实现高效的结节检测与恶性程度判断。博客还介绍了如何定义新指标、微调恶性肿瘤模型,并展示了完整的端到端检测流程。最后,总结了当前系统的成果,并提出了未来改进的方向。原创 2025-08-27 10:02:09 · 11 阅读 · 0 评论 -
42、端到端结节分析及后续进展
本文详细介绍了基于U-Net架构的端到端结节分析系统的设计与实现过程。内容涵盖图像分割模型的训练与评估、结节候选的生成方法、结节分类与恶性检测的流程,以及相关技术要点和挑战应对策略。通过整合分割与分类模型,实现了从原始CT扫描数据到结节检测的完整流程,为癌症的早期诊断提供了技术支持。文章还总结了关键技术和未来发展方向,并提出了进一步优化模型性能的建议。原创 2025-08-26 10:41:46 · 3 阅读 · 0 评论 -
41、使用分割技术查找疑似结节
本文介绍了使用医学影像分割技术检测疑似结节的方法。重点包括构建2D变换矩阵进行数据增强、使用U-Net架构进行分割建模、引入Dice损失函数以提高分割精度,并通过Adam优化器进行模型训练。同时,利用TensorBoard进行训练过程的可视化,包括图像记录和指标监控,以提升模型性能和可解释性。原创 2025-08-25 12:32:56 · 4 阅读 · 0 评论 -
40、使用分割方法查找疑似结节
本文介绍了使用分割方法查找疑似结节的过程,重点分析了数据集的更新与处理方式。文章详细描述了训练集和验证集的划分逻辑、样本生成方法以及数据增强策略,并通过构建Luna2dSegmentationDataset类实现对二维CT切片的处理。为了提高模型训练效率,作者将裁剪训练与GPU数据增强结合,解决了类不平衡问题并优化了训练管道。最后,文章总结了关键技术点,并展望了未来改进的方向。原创 2025-08-24 14:14:03 · 3 阅读 · 0 评论 -
39、肺部结节分割数据集更新与处理
本文详细介绍了肺部结节分割数据集的更新与处理过程。针对3D CT数据在U-Net模型中分割存在的内存和分辨率问题,提出将3D数据转换为2D逐片处理的方法,并通过通道表示相邻切片以保留上下文信息。同时,解决了U-Net输入尺寸限制问题,构建了结节边界框和注释掩码,并将其嵌入CT对象,完成数据缓存和清理。最终形成了适合U-Net训练的肺部结节分割数据集,为提升模型性能提供了高质量的数据基础。原创 2025-08-23 13:09:43 · 5 阅读 · 0 评论 -
38、语义分割:逐像素分类与U-Net架构解析
本文深入解析了语义分割技术及其核心模型U-Net的架构设计。首先介绍了语义分割的基本概念,并对比了分类与分割任务的区别,探讨了卷积、下采样和上采样在分割中的作用。随后详细讲解了U-Net的结构,包括跳跃连接、1x1卷积层和数据流流程。接着通过模型修改实现了针对特定任务(如肺部结节分割)的应用,并分析了各修改部分对模型性能的影响。最后提出了评估指标与优化策略,并展望了语义分割在多个领域的应用前景。原创 2025-08-22 16:22:56 · 3 阅读 · 0 评论 -
37、利用指标、数据增强改进训练及使用分割技术查找疑似结节
本博客介绍了如何通过数据增强改进模型训练,提高结节分类的召回率和抗过拟合能力,并深入探讨了使用 U-Net 模型进行语义分割以自动查找疑似肺结节的技术实现。内容涵盖数据增强策略、分割模型构建、损失函数选择以及模型性能评估,展示了从数据预处理到多步骤项目流程的整体解决方案。原创 2025-08-21 09:21:35 · 3 阅读 · 0 评论 -
36、数据集优化与过拟合处理:从理论到实践
本文探讨了数据集优化与过拟合处理的方法,并结合实践展示了如何通过平衡数据集和应用多种数据增强技术来提升模型的泛化能力。文章详细分析了非平衡与平衡数据集的训练结果对比,识别了过拟合症状,并深入介绍了镜像、平移、缩放、旋转和添加噪声等具体增强操作及其代码实现。最后,文章总结了数据增强技术的应用建议,为优化模型性能提供了实用指导。原创 2025-08-20 16:33:22 · 2 阅读 · 0 评论 -
35、模型训练的指标优化与数据集平衡
本文深入探讨了模型训练中的指标优化与数据集平衡问题。重点介绍了精度、召回率和F1分数的计算与意义,并通过实例分析了数据不平衡对模型训练的负面影响。同时,提出了解决数据不平衡问题的具体实现方法,包括在数据集中实现类平衡以及避免模型退化等策略。最后,通过实际训练结果分析了新指标下的模型表现,并总结了数据平衡对提升模型性能的重要性。原创 2025-08-19 11:53:19 · 2 阅读 · 0 评论 -
34、利用指标和数据增强改进肿瘤分类模型训练
本文探讨了如何通过引入更全面的评估指标和改进数据策略来优化肿瘤分类模型的训练效果。文章分析了传统分类正确率在数据不平衡情况下的局限性,并引入精确率、召回率以及综合指标F1分数来更准确地评估模型性能。此外,文章详细介绍了如何通过数据平衡(如过采样和欠采样)以及数据增强(如旋转、翻转、调整亮度等)来提升模型的泛化能力与稳定性。通过TensorBoard可视化关键指标的变化趋势,结合具体实验分析改进措施的效果,最终实现一个性能更优、实用价值更高的分类模型。原创 2025-08-18 13:52:53 · 1 阅读 · 0 评论 -
33、训练用于检测疑似肿瘤的分类模型
本文介绍了使用深度学习训练模型来检测疑似肿瘤的挑战,特别是在数据极度不均衡的情况下,模型容易忽略正样本的问题。通过分析训练过程和评估结果,揭示了仅依赖整体准确率的局限性,并探讨了如何改进模型性能。同时,还展示了使用 TensorBoard 进行训练可视化的方法,为后续优化提供了方向。原创 2025-08-17 15:50:13 · 1 阅读 · 0 评论 -
32、肿瘤疑似检测分类模型的训练与验证
本文详细介绍了肿瘤疑似检测分类模型的训练与验证过程,涵盖了模型训练循环、验证循环、性能指标的记录与分析,以及运行训练脚本时的注意事项。通过记录每个样本的标签、预测和损失,深入分析模型行为,从而进行针对性优化。文章还提供了代码优化建议,并结合工具判断训练瓶颈,为提升模型性能提供了完整的解决方案。原创 2025-08-16 13:38:02 · 2 阅读 · 0 评论 -
31、肿瘤疑似检测分类模型的训练与设计
本文详细介绍了基于PyTorch的肿瘤疑似检测分类模型的设计与训练过程。内容涵盖预训练设置、数据加载器的构建、3D卷积神经网络的设计、训练与验证流程、以及超参数调整与优化建议。通过系统化的实现与分析,为构建高效的医学影像分类模型提供了实用的指导。原创 2025-08-15 14:55:37 · 2 阅读 · 0 评论 -
30、肺癌检测项目:数据处理、模型训练与优化
本文介绍了肺癌检测项目的数据处理、模型训练与优化过程。内容涵盖数据解析与加载、缓存机制、数据集划分、模型实现以及训练循环的设计。同时讨论了数据可视化的重要性,并提供了训练和验证模型的详细步骤。文章还分析了模型性能指标,并提出了优化模型性能的实验方向,包括数据集调整、缓存优化以及模型结构改进。最终展示了整个项目流程的完整框架,为肺癌的早期检测提供了技术实现思路。原创 2025-08-14 09:00:28 · 2 阅读 · 0 评论 -
29、医学CT数据处理与数据集构建详解
本文详细介绍了医学CT数据处理与数据集构建的关键步骤,包括患者坐标系与体素坐标系的转换、CT扫描形状与体素大小的处理、结节提取方法、自定义数据集的实现、训练与验证集的划分策略,以及缓存机制的使用。通过具体代码示例和流程图、表格等形式,帮助读者深入理解医学CT数据处理的核心原理和实际应用,为医学影像分析和深度学习模型训练提供基础支持。原创 2025-08-13 13:40:45 · 2 阅读 · 0 评论 -
28、医学影像数据处理:从多源数据整合到结节定位
本博客详细介绍了医学影像数据处理的关键步骤,包括多源数据整合、结节定位与分析、CT扫描数据加载、坐标转换等内容。通过统一 candidates.csv 和 annotations.csv 数据,结合 Hounsfield 单位处理和患者-体素坐标系转换,为深度学习模型训练提供高质量输入。适用于医学影像分析、人工智能辅助诊断及相关研究领域。原创 2025-08-12 12:05:57 · 1 阅读 · 0 评论 -
27、肺癌端到端检测项目:从数据理解到模型训练
本博客详细介绍了肺癌端到端检测项目的流程,从肺结节的定义出发,深入解析了数据来源(LUNA大挑战)、数据下载与处理、训练与验证集的划分,以及模型训练的准备工作。项目旨在通过医学影像分析技术,实现对肺部结节的准确检测与分类,最终提高肺癌诊断的准确性。原创 2025-08-11 15:36:56 · 5 阅读 · 0 评论 -
26、使用PyTorch对抗癌症:肺癌检测项目全解析
本文详细解析了使用PyTorch进行深度学习的肺癌检测项目,从项目背景与挑战、CT扫描的本质到端到端的检测流程,全面介绍了如何通过分步骤的方法实现对肺癌的精准检测。文章还探讨了为何不直接使用端到端模型,以及多步骤设计在实际应用和学习中的优势。适合希望了解医学影像分析与深度学习结合的读者。原创 2025-08-10 15:09:47 · 3 阅读 · 0 评论 -
25、卷积神经网络与肺癌检测:从理论到实践
本文介绍了卷积神经网络的基本原理及其在肺癌检测中的应用。从卷积网络的初始化、设计优化、挑战与改进,到肺癌检测项目的背景、实施步骤和技术要点,全面探讨了深度学习在医学图像分析中的潜力与实践路径。文章还提供了具体的代码示例和优化流程,为读者提供从理论到实践的完整视角。原创 2025-08-09 12:49:27 · 2 阅读 · 0 评论 -
24、利用卷积实现模型泛化:宽度、正则化与深度探索
本文探讨了如何通过调整网络宽度、引入正则化方法以及增加网络深度来提升卷积神经网络的泛化能力。详细介绍了模型宽度对容量的影响、L2正则化、Dropout和批量归一化的实现与作用,以及深度网络中残差连接如何解决梯度消失问题。同时对比了不同网络结构的性能特点,并提供了实际应用中的注意事项和选择建议。原创 2025-08-08 11:28:36 · 1 阅读 · 0 评论 -
23、使用卷积实现泛化与卷积网络训练
本文详细介绍了如何使用卷积神经网络实现泛化、构建和训练模型,并探讨了功能API与模块化API的选择、准确率计算、模型保存与加载、以及在GPU上训练模型的方法。同时,文章还展望了未来模型设计的发展方向,帮助读者全面掌握卷积网络训练的核心要点。原创 2025-08-07 11:09:06 · 2 阅读 · 0 评论 -
22、卷积神经网络:从基础到实战
本文从基础概念入手,深入介绍了卷积神经网络(CNN)的原理与实战应用。内容涵盖卷积的泛化应用、深度与池化的探索、网络的构建与优化方法,以及如何使用PyTorch实现一个完整的图像分类任务。通过示例代码和流程图,帮助读者理解CNN的工作机制和训练流程,并提供模型调优策略,以提升性能。最后总结了CNN的应用前景及未来发展方向。原创 2025-08-06 09:32:22 · 1 阅读 · 0 评论 -
21、图像识别:从全连接网络到卷积网络的转变
本文探讨了从全连接网络到卷积网络的转变,分析了全连接网络在图像分类任务中的局限性,并介绍了卷积网络的原理和优势。通过使用 PyTorch 构建和训练卷积神经网络,展示了卷积操作如何提升模型在图像分类任务中的性能。文章还详细介绍了卷积层、池化层和全连接层的作用,以及它们在构建卷积神经网络中的重要性。原创 2025-08-05 13:26:13 · 1 阅读 · 0 评论 -
20、从图像中区分鸟类和飞机:图像学习之路
本文探讨了在图像分类任务中区分鸟类和飞机的模型构建与优化过程。文章首先指出均方误差(MSE)不适用于分类任务,并基于 PyTorch 实现了一个简单的全连接网络进行训练。通过引入随机梯度下降(SGD)和 DataLoader 提高训练效率,发现模型存在过拟合问题。随后,文章分析了全连接网络的局限性,如忽略像素位置信息和缺乏平移不变性,进而引入卷积层作为解决方案。详细介绍了卷积层的工作原理、优势及代码实现,并通过对比分析展示了卷积神经网络(CNN)在处理图像数据方面的优越性。最后,文章总结了全连接网络的不足,原创 2025-08-04 14:09:33 · 1 阅读 · 0 评论 -
19、从图像中学习:区分鸟类和飞机
本文详细介绍了如何使用CIFAR-10数据集构建一个神经网络模型来区分鸟类和飞机。内容涵盖数据预处理、数据集构建、模型设计、分类器输出的概率表示、损失函数选择、模型训练与优化,以及改进方法。通过这些步骤,为解决图像分类问题奠定了基础,并为进一步探索卷积神经网络和更复杂模型提供了方向。原创 2025-08-03 09:26:52 · 1 阅读 · 0 评论 -
18、使用神经网络拟合数据及图像识别入门
本文介绍了使用神经网络进行数据拟合和图像识别的基础知识。首先通过构建简单的神经网络模型,逐步讲解模型定义、参数检查、训练过程及与线性模型的比较;接着转向图像识别任务,以CIFAR-10数据集为例,介绍了数据加载、转换、可视化及构建前馈神经网络进行分类的方法。文中还讨论了避免过拟合的策略以及优化模型性能的实验建议,适合深度学习入门读者学习与实践。原创 2025-08-02 14:06:02 · 2 阅读 · 0 评论 -
17、人工神经元与PyTorch神经网络模块详解
本文详细解析了人工神经元的基本原理及常见激活函数,介绍了PyTorch中神经网络模块(nn.Module)的使用方法,并通过代码示例展示了如何构建和训练一个线性回归模型。文章还深入探讨了批量输入的重要性及其优化策略,并给出了完整的训练流程及可视化方法,帮助读者全面理解深度学习模型的构建与训练过程。原创 2025-08-01 15:12:00 · 1 阅读 · 0 评论 -
16、PyTorch 自动求导与神经网络基础
本文深入探讨了 PyTorch 的自动求导机制及其在神经网络中的应用。内容包括自动求导的工作原理与优化技巧(如使用 torch.no_grad 关闭计算图)、学习机制的核心概念、神经网络的基本结构以及激活函数的作用。此外,文章还通过一个具体的温度转换案例,演示了如何使用 PyTorch 构建、训练和评估神经网络模型。对比线性模型,神经网络能够更好地拟合复杂关系,并通过多层非线性变换实现强大的函数逼近能力。最后,文章总结了神经网络的优势与挑战,并提供了模型选择的参考依据。原创 2025-07-31 16:53:09 · 1 阅读 · 0 评论 -
15、PyTorch深度学习:自动求导、优化器与过拟合处理
本文详细介绍了在PyTorch框架下进行深度学习模型训练的关键技术。内容包括自动求导的实现机制,优化器的选择与使用,如SGD、Adam等,并通过代码示例演示了如何在训练循环中集成优化器。同时,文章深入探讨了过拟合问题,包括其定义、表现形式以及多种解决方法,如添加噪声、正则化、简化模型等。此外,还涵盖了数据集划分策略以及训练与验证损失的监控与可视化方法。通过这些内容,帮助读者提升模型训练的效率和泛化能力。原创 2025-07-30 11:45:01 · 3 阅读 · 0 评论 -
14、学习机制与PyTorch自动求导的深入探索
本文深入探讨了机器学习中的学习机制,重点分析了如何通过梯度计算和参数优化改进模型的训练过程。通过手动计算梯度的示例,展示了梯度下降的基本原理,并讨论了训练过程中可能出现的发散问题及其解决方法,包括调整学习率和输入归一化。同时,文章介绍了PyTorch框架提供的自动求导功能,详细解析了其原理和在复杂模型中的应用。通过数据可视化,直观呈现了模型对数据的拟合效果。最后,对比了手动求导与自动求导的优劣,并展望了自动求导在未来深度学习领域的发展潜力。原创 2025-07-29 10:48:14 · 1 阅读 · 0 评论 -
13、学习机制:从参数估计到梯度下降
本文从一个简单的温度计校准问题出发,详细介绍了机器学习中学习即参数估计的核心概念。内容涵盖了数据收集、线性模型选择、损失函数定义、梯度下降算法原理及实现,并通过PyTorch框架展示了手动计算梯度和自动求导的不同实现方式。同时,还讨论了学习率对训练过程的影响,为后续深入学习深度学习模型奠定了基础。原创 2025-07-28 16:29:31 · 1 阅读 · 0 评论 -
12、现实世界数据的张量表示与学习机制
本文探讨了现实世界数据的张量表示与学习机制,重点介绍了文本数据的处理方法,包括独热编码和文本嵌入,并对比了它们的优缺点。此外,文章还讨论了机器学习中的学习算法核心要素,以Kepler的行星运动研究为灵感,解析了模型训练的基本流程。最后,介绍了PyTorch框架对学习的支持,以及如何利用自动求导进行梯度计算。通过对不同类型数据的表示方法和学习机制的深入分析,为深度学习模型的训练打下了坚实基础。原创 2025-07-27 12:24:28 · 0 阅读 · 0 评论