贝尔类型考虑的频率概率分析
1. 引言
在之前的研究中,贝尔不等式及其推广的推导基于对概率分布的一系列假设,且这些假设通常在标准测度理论框架下提出。本文将运用冯·米塞斯集体(或更实用的 S - 序列方法)对用于推导贝尔不等式的概率分布假设进行频率概率分析,以探寻蕴含或不蕴含贝尔假设的物理和数学条件。
2. 频率概率分析的主要结论
频率分析得出两个主要结论:
- 某些概率分布可能根本不存在。
- 所谓的贝尔局域性条件仅仅是集体独立性的条件。
需要注意的是,此频率分析并非反对非局域性的论据,只是表明贝尔关于非局域性或实在论消亡的结论并非完全合理。在量子物理当前的发展阶段,一些其他理论(如玻姆力学)为非局域性提供的论据比贝尔不等式更为严谨。
3. 隐藏变量的频率概率描述
在标准的 EPR - 玻姆框架下,考虑一个复合系统 (s = (s_1, s_2)),例如一对相关的电子或光子。子系统 (s_1) 的可观测量用 (a, b, c, \cdots) 表示,子系统 (s_2) 的可观测量用 (a’, b’, c’, \cdots) 表示。隐藏变量用 (\omega) 表示,假设隐藏变量的集合是有限的 (\Omega = {\omega_1, \omega_2, \cdots, \omega_M})。
在特定的物理条件 (C) 下,有一系列粒子对 (s = (s_j = {s_{1j}, s_{2j}}, j = 1, 2, \cdots))。对于测量设备的设置 (a) 和 (b),可得到序列:
- (x_{a,\omega} = ((\alpha_1, \omega_1)