双曲量子化与经典力学变形研究
1. 双曲量子化基础
在量子力学的研究中,双曲量子化是一个独特且重要的领域。与普通量子形式主义类似,我们使用双曲希尔伯特空间 (H) 中的归一化向量来表示物理状态,即 (\psi \in S^1)。这里主要考虑属于二维希尔伯特空间的二分物理变量和量子态,所以后续 (H) 均表示二维空间。
设 (a = {\alpha_1, \alpha_2}) 和 (b = {\beta_1, \beta_2}) 为两个物理变量,在狄拉克符号下,它们由 (G) - 线性算子表示:
(\hat{a} = \alpha_1|\alpha_1\rangle\otimes\langle\alpha_1| + \alpha_2|\alpha_2\rangle\otimes\langle\alpha_2|)
(\hat{b} = \beta_1|\beta_1\rangle\otimes\langle\beta_1| + \beta_2|\beta_2\rangle\otimes\langle\beta_2|)
其中 ({| \alpha_i\rangle} {i = 1,2}) 和 ({| \beta_i\rangle} {i = 1,2}) 是 (H) 中的两个正交基。这一条件在双曲量子力学中起着关键作用,类似于传统量子力学(在复希尔伯特空间中)用自伴算子表示物理可观测量。
对于一个状态 (\psi)(属于 (H) 的归一化向量),我们可以将其相对于基 ({| \beta_i\rangle} {i = 1,2}) 展开:
(\psi = v_b^1|\beta_1\rangle + v_b^2|\bet