22、双曲量子力学:传统经典力学的变形与拓展

双曲量子力学:传统经典力学的变形与拓展

1. 双曲量子力学与经典力学的关系

双曲量子力学在某些方面与传统经典力学存在紧密联系。通过一系列的证明可以得出,当普朗克常数 (h) 趋近于 0 时,双曲量子力学与经典力学是一致的。

在证明过程中,涉及到泊松括号的双曲傅里叶表示。具体如下:
首先有 ({a_1, a_2}^ (q, q)) 的表达式:
({a_1, a_2}^
(q, q) = e^{jq(p_1 + p_2) + jp(q_1 + q_2)}[e^{jhq_1p_2} - e^{jhq_2p_1}]\tilde{a}_1 \otimes \tilde{a}_2(dp_1dq_1dp_2dq_2))
经过进一步推导,可近似为 (jh e^{jq(p_1 + p_2) + jp(q_1 + q_2)}[q_1p_2 - q_2p_1]\tilde{a}_1 \otimes \tilde{a}_2(dp_1dq_1dp_2dq_2) + O(h))
同时,(\frac{\partial a_1}{\partial p}(q, p)\frac{\partial a_2}{\partial q}(q, p)) 的表达式为:
(\frac{\partial}{\partial p} e^{j(qp_2 + pq_1)} \tilde{a}_1(dp_1dq_1) \frac{\partial}{\partial q} e^{j(qp_2 + pq_2)} \tilde{a}_2(dp_2dq_2) = j^2q_1p_2e^{jq(p_1 + p_2) + jp(q_1 + q_2)} \tilde{a}_1 \otimes \ti

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值