[1016]DataFrame一列拆成多列以及一行拆成多行

DataFrame一列拆成多列

  1. 读取数据

  2. 将City列转成多列(以‘|’为分隔符)

这里使用匿名函数lambda来讲City列拆成两列。

DataFrame一行拆成多行

分割需求

在处理数据过程中,会需要将一条数据拆分为多条,比如:a|b|c拆分为a、b、c,并结合其他数据显示为三条数据。

简要流程

  • 将需要拆分的数据使用split拆分,并通过expand功能分成多列
  • 将拆分后的多列数据使用stack进行列转行操作,合并成一列
  • 将生成的复合索引重新进行reset_index保留原始的索引,并命名为C
  • 将处理后的数据和原始DataFrame进行join操作,默认使用的是索引进行连接

详细说明

0. 初始数据
df
=============================
# 显示df中的数据
      A    B          C
0    t1    china    a|b|c
1    t2    usa      d|e|f
1. 使用split拆分

对C列,按照|进行拆分

column_C = df['C'].str.split('|', expand=True)
=================================
# 显示column_C的数据
    0    1    2
0   a    b    c
1   d    e    f
2. 使用stack行转列
column_C = column_C.stack()
=================================
# 显示column_C的数据
0     0    a
      1    b
      2    c
1     0    d
      1    e
      2    f
## 前两列是索引,实际上column_C是一个未设置名字的Series
3. 重置索引(删除多余的索引)并命名为C
column_C = column_C.reset_index(level=1, drop=True, name='C')
==================================
# 显示column_C的数据
0    a
0    b
0    c
1    d
1    e
1    f
Name: C, dtype: object
4. 使用join合并数据
# 原始数据丢弃C列,然后与column_C合并
df_new = df.drop(['C'], axis=1).join(column_C)
===================================
# 显示df_new 的数据
      A    B          C
0    t1    china      a
0    t1    china      b
0    t1    china      c
1    t2    usa        d
1    t2    usa        e
1    t2    usa        f

参考:https://blog.csdn.net/Asher117/article/details/84346073/
https://www.jianshu.com/p/0ecda1a41732

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周小董

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值