【数据挖掘】挖掘建模-回归分析(1)

参考文献:《Python数据分析与挖掘实战》

分类与预测

一、实现过程

  1. 分类:构造分类模型,输入样本的属性值,输出对应的类别,将每个样本映射到预先定义好的类别。属于有监督的学习。
  2. 预测:建立两种或两种以上变量间相互依赖的函数模型,然后进行预测或控制。
  3. 分类实现过程:
    学习:通过归纳分析训练样本集来建立分类模型得到分类规则。
    分类:用已知的测试样本集评估分类规则的准确率,若结果可接受则用样本集进行预测。
  4. 预测实现过程:
    通过训练集建立预测数值型属性的函数模型。
    在模型通过检验后进行预测或控制。

二、常用的分类和预测算法

算法 描述
回归分析 预测数值型属性(线性回归、非线性回归、逻辑回归、岭回归、主成分回归、偏最小二乘回归)
决策树 自顶向下的递归方式,内部节点进行属性值比较,根据不同属性值从节点向下分支,最终得到的叶节点为学习划分的类
人工神经网络 反映神经网络的输入和输出变量之间关系的模型
贝叶斯网络 不确定知识表达和推理领域最有效的理论模型
支持向量机 通过某种非线性映射,把低维的非线性可分转化为高维的线性可分,在高维空间进行线性分析的算法

回归分析

一、常用回归模型

模型 适用条件
线性回归 因变量和自变量是线性关系
非线性回归 因变量和自变量不都是线性关系
逻辑回归 因变量有0/1两种取值
岭回归 参与建模的自变量之间有多重共线性
主成分回归 参与建模的自变量之间有多重共线性

二、逻辑回归模型

  1. 逻辑函数
    假设有n个独立的自变量,x1,x2,...,xnx_1,x_2,...,x_nx1,x2,...,xn
    假设y=1的概率p(y=1)=p=P(y=1∣X)p(y=1)=p=P(y=1|X)p(y=1)=p=P(y=1X),y=0的概率是p(y=0)=1-p
    则概率之比为p1−p\frac{p}{1-p}1pp,取自然对数得到逻辑变换Logit(p)=ln(p1−p)Logit(p) = ln(\frac{p}{1-p})Logit(p)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值