LiDPM:重新思考点云补全的Point Diffusion

1. 引言

LiDPM提出了一种基于全局扩散模型的激光雷达场景补全方法,突破了现有局部扩散模型的局限性,统一了点云扩散模型在物体级和场景级应用的框架。其核心贡献如下:

1.1. 理论创新

  • 挑战局部扩散的假设:现有方法(如LiDiff)认为,标准DDPM无法直接处理大规模激光雷达场景,需通过局部扩散(仅对点偏移量进行扩散)来简化问题。但LiDPM证明,这一假设并不成立,标准DDPM可直接应用于场景级点云生成,无需引入局部扩散的近似。

  • 消除冗余近似:LiDiff等方法需依赖稀疏点云的噪声估计(如用稀疏点云的复制近似稠密场景),导致生成能力受限。LiDPM通过全局扩散直接建模点云分布,避免了此类近似。

1.2. 方法统一性

  • 将物体级扩散模型(如PVD)与场景级模型统一,证明标准DDPM框架只需适当调整初始条件(如从中间噪声步骤开始扩散),即可扩展到大规模场景,无需定制化设计。

1.3. 性能提升

  • 在SemanticKITTI数据集上,LiDPM在场景补全任务中显著优于LiDiff等方法,尤其在细节生成(如远处结构)和稳定性(无需额外正则化)方面表现突出。

  • 支持无条件生成:LiDPM可脱离条件输入(如稀疏点云),直接生成全新场景,拓展了扩散模型的应用范围。

论文链接:https://arxiv.org/abs/2504.17791

Image

2. 方法详解

Image

2.1. 标准DDPM框架

LiDPM基于去噪扩散概率模型(DDPM),其核心过程包括:

  • 前向扩散:逐步向稠密点云添加高斯噪声,生成噪声点云。

  • 反向去噪:通过神经网络预测噪声 (\epsilon_\theta),逐步从噪声中恢复稠密点云。

2.2. 关键改进

2.2.1. 全局扩散与初始点选择

  • 问题:直接从纯噪声开始扩散会导致细节丢失(如远处结构模糊)。

  • 解决方案:从中间时间步(如300步)开始扩散,初始点云由稀疏点云的复制倍叠加噪声生成,平衡了结构保真度与生成能力。

2.2.2. 条件扩散与分类器自由指导

  • 通过分类器自由指导(Classifier-Free Guidance)融合稀疏点云条件,增强生成点云与输入的一致性:

  • 超参数  控制条件强度,实验表明其显著提升补全精度。

2.2.3. 网络架构与稳定性优化

  • 采用LiDiff的MinkUNet骨干网络,但将批归一化(BatchNorm)替换为实例归一化(InstanceNorm),避免条件输入或全零)导致的统计偏移问题。

  • 无需额外正则化(如LiDiff的噪声均值/方差约束),简化了训练流程。

2.3. 生成与补全流程

2.3.1. 训练阶段

  • 输入:有序列表(稠密点云真值)和稀疏点云。

  • 目标:最小化预测噪声与真实噪声的差异(MSE损失)。

2.3.2. 推理阶段

  • 初始化:从开始,生成初始噪声点云。

  • 反向扩散:通过DPM-Solver快速采样(20步),逐步去噪生成稠密点云。

Image


3. 实验结果

3.1. 数据集与指标

  • 数据集:SemanticKITTI,包含大规模户外激光雷达场景,训练集为序列00-10,验证集为序列08。

  • 评价指标

    • **Chamfer Distance (CD)**:衡量生成点云与真值的几何差异。

    • **Jensen-Shannon Divergence (JSD)**:评估点云分布的相似性(3D和BEV视角)。

    • Voxel IoU:不同体素分辨率(0.5m、0.2m、0.1m)下的交并比。

3.2. 主要结果

3.2.1. 与现有方法对比

  • 扩散模型对比

Image

  • 完整方法对比
    LiDPM在IoU 0.2m(44.4 vs. 40.7)、IoU 0.1m(27.6 vs. 24.8)等指标上优于LiDiff,且生成点云的结构更清晰(图4)。

3.2.2. 消融实验

  • 初始时间步 (t_0):(t_0=300) 为最佳选择,平衡了结构保真度与生成能力(CD=0.437,IoU 0.2m=42.3)。

  • 采样步数:DPM-Solver仅需20步即可达到与50步相近的性能(CD=0.428 vs. 0.437),加速生成过程。

Image

3.2.3. 定性结果

  • LiDPM生成的点云在远处区域(如道路边缘、建筑物)细节更丰富,且无LiDiff的虚假结构(图4)。

  • 无条件生成:通过调整初始形状(如直线、转弯),LiDPM可生成多样化的合成场景(图5)。

Image

3.3. 稳定性分析

  • 归一化策略:实例归一化有效避免了批归一化导致的远距离点云生成异常(图3)。

  • 噪声预测:LiDPM的噪声预测均值接近0,标准差稍低(0.6 vs. 1),但无需正则化即可收敛。

Image

4. 结论与展望

LiDPM通过重新思考点扩散模型的设计,证明了标准DDPM框架在场景级激光雷达补全任务中的有效性。其核心优势包括:

  • 简化流程:无需局部扩散的复杂近似,降低模型设计复杂度。

  • 性能提升:在SemanticKITTI上取得SOTA结果,尤其在细节生成和稳定性方面。

  • 扩展性:支持无条件生成,为数据增强和仿真场景构建提供新工具。

未来方向

  • 探索更高效的采样策略(如更少步数)。

  • 结合语义信息,实现语义-几何联合补全。

  • 扩展至动态场景(如移动物体补全)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值