吴恩达 机器学习cs229-学习笔记-更新中

吴恩达 机器学习cs229

01 基础概念

语言 : Matlab / python

监督学习

定义: 获取一组数据集 拟合数据 从X到Y的映射

  • 回归问题 :预测的Y是连续的 ,Y是实数

  • 分类问题:分类指的是Y取离散值,输出是离散的

两组,正示例和负示例 ,把所有样本推到这条直线上,用0,1,标识

逻辑回归算法,拟合直线区分正,负示例

处理相对大量特征的回归算法或者分类算法

  • 支持向量机算法:它使用的不是1,2,3,10个输入特征,而是使用

无限量个输入特征,

计算机如何存储无限维向量?

监督学习的核心:

你会同时获得输入X 和 标签Y

任务:找到一个映射关系,使得给定一个新的X时,映射到合适的输出Y

神经网络的输出,最初不知道如何走,随着算法通过反向传播学习或梯度下降法,神经网络的输出会更精准

无监督学习

定义 : 给你一个没有标签的数据集,只有输入X , 而没有Y,

  • K均值聚类算法: 比如把不同新闻来源的文章归类为统一主题

02 线性回归

批量梯度下降和随机梯度下降时拟合线性回归模型的

正规方程-一种高效的线性模型拟合方法

用于监督学习回归问题的就是线性回归

数据集–>输入学习算法–>输出一个假设函数预测

设计监督学习算法流程:

工作流程是什么?数据集是什么?假设函数是什么?如何表示假设函数?

比如:

输入两个特征 : X1房子面积 X2卧室数量 θ\thetaθ 是参数

那么假设函数为:
h(x)=∑j=02θjXjθj=(θ0θ1θ2)X0=1Xj=(X0X1X2) h(x) = \sum_{j=0}^2\theta_jX_j\\ \theta_j = \left(\begin{matrix} \theta_0\\ \theta_1\\ \theta_2\\ \end{matrix}\right)\\ X_0 = 1\\ X_j= \left(\begin{matrix} X_0\\ X_1\\ X_2\\ \end{matrix}\right)\\ h(x)=j=02θjXjθj=θ0θ1θ2X0=1Xj=X0X1X2
符号介绍:

m : 训练样本的数量 ,对应表格中的行数

X : 输入, 通常被称为特征

Y : 输出,目标变量

(X,Y)是训练样本

(Xi,Yi)(X^i,Y^i)(Xi,Yi) : 第i个训练样本

n : 监督学习问题中的特征数量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值