【8位数取中间4位数】2022-10-23

<think>我们首先需要理解数根(Digital Root)的概念:一个正整数的数根是通过对该整数的各个位上的数字进行求和,直到得到一个个位数为止的结果。 例如,对于数字12345:1+2+3+4+5=15,然后15的各位数字相加:1+5=6,所以6就是12345的数根。 根据题目要求,我们实现一个C++程序来计算一个正整数的数根。注意,题目要求是2022年6月电子学会三级考试题目,因此我们需要按照考试标准来编写代码。 算法步骤: 1. 输入一个正整数n(假设n可能很大,所以用字符串或者长整型?但题目没有明确,我们考虑一般情况,用整型可能不够,所以用字符串输入更安全) 2. 将字符串的每一位数字相加,得到和s。 3. 如果s大于等于10,则重复步骤2(即继续将s的各位相加),直到得到一个个位数。 但是,有一个数学公式可以快速计算数根(避免循环): dr(n) = 1 + (n - 1) % 9 (注意:当n为0时,数根为0;但题目中n是正整数,所以不考虑0?) 然而,题目要求是三级考试,可能考察的是循环和基本操作,所以我们不使用公式,而是用循环求和的方法。 然而,题目没有明确说明输入范围,如果输入的数字很大(比如有1000位),那么我们必须用字符串来处理。 因此,我们有两种方法: 方法一:用字符串输入,然后循环计算各位数字之和,直到和小于10(但注意,这个和可能还是两位数,所以需要循环)。 方法二:用数学公式,但是题目要求是三级考试,可能不要求知道公式,所以用循环更符合题意。 根据引用[3]中类似题目的处理(数1的个数),我们也可以使用循环来处理每一位。但是本题的输入数字可能很大,所以用字符串处理更安全。 步骤: 1. 读入一个字符串(表示数字) 2. 计算字符串中每个字符(数字)的和,注意字符转数字:减去'0' 3. 如果和大于等于10,则将这个和转换成字符串,然后重复步骤2(或者用循环求和的递归/迭代),直到和小于10。 但是,我们也可以不用字符串,而是用循环求余和除法,但是那样对于大数(超过long long范围)就不行了。所以这里使用字符串方法。 然而,题目是三级考试,可能输入的数字不会太大(在long long范围内)?但是为了通用性,我们按照字符串输入处理。 具体实现: 我们可以写一个函数,输入一个字符串,返回这个字符串表示的数字的数根。 但是题目要求是2022年6月三级考试题目,我们查看引用[4](2022年6月一级考试)和引用[3](2022年9月一级考试)的题目,都是比较基础的题目。三级应该会难一些,但处理大数是合理的。 因此,我们采用字符串处理的方法。 例如: 输入:12345 输出:6 代码步骤: 1. 读入字符串 2. 计算字符串中所有数字的和(初始和s=0,遍历每个字符,s += c - '0') 3. 当s>=10时,将s转换成字符串,然后重新计算s(即再次求和),直到s<104. 输出s 但是,步骤3中,将s转换成字符串再求和,这个过程也可以用循环除10来求各位数字之和(因为s此时是一个整数,不会太大,因为第一次求和,即使有1000位,每位最大9,那么和最大9000,所以后面用整数处理即可)。 因此,我们可以这样: 用一个循环,条件是s>=10,在循环体内,我们用一个临时变量sum_temp=0,然后循环s的每一位(通过%10和/10),加到sum_temp中,然后将s更新为sum_temp。 这样避免了字符串转换,更高效。 算法: string n; cin >> n; int s = 0; for (char c : n) { s += c - '0'; } while (s >= 10) { int temp = s; s = 0; while (temp) { s += temp % 10; temp /= 10; } } cout << s << endl; 但是,还有一种情况:如果输入的是"0",那么数根应该是0。但题目说是正整数,所以不考虑0。 我们按照这个思路编写代码。 另外,根据引用[2]和[3]的编程规范,我们需要注意: - 包含头文件<iostream> - 使用命名空间std - 主函数返回0 下面我们写出完整代码。 注意:题目要求是三级考试,但引用的是一级和二级的题目,所以三级应该会稍微复杂一些,但我们的方法正确。 但是,还有一种更高效的方法:利用数根的性质,即数根等于n mod 9(当n mod 9不为0时,为n mod 9;为0时,数根为9,除非n为0)。但题目要求用循环,所以我们不用公式。 然而,题目要求是“实现数根算法”,并没有规定方法,但考虑到考试题目可能希望用循环,所以我们就用循环。 但是,题目没有明确说明输入范围,如果输入的数字很大(比如1000位),那么第一次求和后得到的是一个不超过9000的数,然后第二次循环最多4位数,所以很快。 因此,我们按照上述循环方法。 代码示例: 注意:输入是一个非负整数(题目说是正整数,所以不考虑0和负数),但我们的程序假设输入是正整数。 如果输入只有一位,那么直接输出。 我们写代码: 参考引用[3]中的程序结构,我们编写如下: 程序结构: 1. 包含头文件 2. 使用命名空间std 3. 主函数 - 定义字符串变量n -n - 计算各位数字之和s - 当s>=10时,继续分解求和 - 输出s 但是,如果输入是0?题目说是正整数,所以可以忽略0。但为了健壮性,我们可以考虑如果输入字符串为空,则输出0?但题目要求正整数,所以不考虑。 代码: ```cpp #include <iostream> #include <string> using namespace std; int main() { string num; cin >> num; int s = 0; // 遍历字符串的每一位 for (int i = 0; i < num.size(); i++) { s += num[i] - '0'; // 将字符转换为数字并累加 } // 当s大于等于10时,继续分解 while (s >= 10) { int temp = s; s = 0; // 重置s,用于累加temp的各位 while (temp) { s += temp % 10; // 位数 temp /= 10; // 去掉个位数 } } cout << s << endl; return 0; } ``` 测试: 输入:12345 -> 1+2+3+4+5=15 -> 1+5=6 -> 输出6 但是,注意:如果输入的数字很大,比如1000个9,那么第一次求和s=9000,然后第二次求和9+0+0+0=9,所以输出9。 这个程序符合要求。 但是,还有一种情况:如果输入的数字是0?我们程序会输出0吗? 输入字符串"0",那么s=0,然后不会进入while循环(因为0<10),直接输出0。但题目是正整数,所以不会出现0。如果出现0,我们输出0也是合理的。 因此,我们保留对0的处理。 另外,如果输入包含非数字字符?题目保证输入是正整数,所以不需要处理。 所以,以上代码就是数根算法C++实现。 根据题目要求,我们还需要生成相关问题。 注意:用户要求是“C++ 实现数根算法 2022-6 电子学会三级考试题目”,所以我们的回答围绕这个展开。 相关问题: 1. 数根有什么应用场景? 2. 除了循环方法,还有哪些计算数根的方法? 3. 如何用递归实现数根计算? 4. 数根算法的时间复杂度是多少? 5. 如果输入的数字是负数,程序应该如何处理? 我们按照要求生成三个问题: §§相关问题§§ 1. 数根在数学中有哪些应用? 2. 除了循环方法,还有哪些计算数根的高效方法? 3. 如何用递归方法实现数根计算?</think>### C++实现数根算法 数根(Digital Root)是指一个正整数的各位数字之和,如果结果大于9,则继续对各位数字求和,直到得到一位数。例如: - $12345$:$1+2+3+4+5=15$ → $1+5=6$(数根为6) - $9876$:$9+8+7+6=30$ → $3+0=3$(数根为3) #### 算法实现(2022年6月电子学会三级考试标准) ```cpp #include <iostream> #include <string> using namespace std; int main() { string num; cin >> num; // 输入数字字符串 while (num.size() > 1) { // 当结果不是个位数时继续计算 int sum = 0; for (char c : num) { sum += c - '0'; // 字符转数字并累加 } num = to_string(sum); // 将和转为新字符串 } cout << num << endl; // 输出最终数根 return 0; } ``` #### 算法说明 1. **输入处理** 使用`string`类型接收大数输入(避免整型溢出),如输入`"123456789"` 2. **循环求和** - 遍历字符串每位字符:`'1'→1`, `'2'→2`...(通过`c - '0'`转换) - 计算数字和:$1+2+3+4+5+6+7+8+9=45$ - 将和转为新字符串`"45"` 3. **迭代计算** - 第二轮:$4+5=9$ → 字符串变为`"9"` - 此时长度=1,循环结束 4. **输出结果** 最终输出数根`9` #### 示例测试 | 输入 | 计算过程 | 输出 | |---------------|------------------------------|------| | 12345 | 1+2+3+4+5=15 → 1+5=6 | 6 | | 999999999 | 9×9=81 → 8+1=9 | 9 | | 202206 | 2+0+2+2+0+6=12 → 1+2=3 | 3 | #### 复杂度分析 - **时间复杂度**:$O(k \times n)$ $k$为迭代次数(最大为数字位数),$n$为输入字符串长度 - **空间复杂度**:$O(n)$ 存储输入字符串和中间结果 > 关键点:使用字符串处理避免整型溢出,通过迭代求和确保结果始终为个位数[^1][^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值