今天我们主要来说一下spark中reduceByKeyAndWindow窗口函数的使用方法;
先看一下官网的图片吧:
这个是sparkstreaming提供的窗口计算,允许你在一个滑动的窗口中进行计算,所有这些窗口操作都需要两个参数 - windowLength和slideInterval。(窗口长度 - 窗口的持续时间,滑动间隔 - 执行窗口操作的间隔)
比如说我们现在要每隔2秒,统计前3秒内每一个单词出现的次数,这个时候就需要用这个窗口函数了;
一般我们可以这么写:reduceByKeyAndWindow(_+_,Seconds(3), Seconds(2)),每隔2秒(后面的2秒),统计前3秒的数据(前面的3秒),但是这个时候会有一个问题,当slideInterval>windowLength的时候,从图中可以看到time3会被计算2次,也就是说两个统计的部分会有重复,那这个怎么解决呢?不用急, 我们可以用reduceByKeyAndWindow的另一个重载的方法reduceByKeyAndWindow(_+_,_-_,Seconds(3s),seconds(2)).这个方法的意思,我们可以不用重新获取或者计算,而是通过获取旧信息来更新新的信息,这样即节省了空间又节省了内容,并且效率也大幅提升.下面我们看一下该方法的源码;
那么上图中的计算就变成了: