【Spark实战系列】sparkstreaming 的 reduceByKeyAndWindow 窗口函数的用法详解

本文详细介绍了Spark Streaming中的reduceByKeyAndWindow窗口函数,包括其工作原理、参数设置和避免数据重复的方法。通过实例演示,展示了如何利用此函数每隔2秒统计前3秒内单词的频率,以及如何优化处理slideInterval大于windowLength的情况,以提高效率和准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天我们主要来说一下spark中reduceByKeyAndWindow窗口函数的使用方法;

先看一下官网的图片吧:

这个是sparkstreaming提供的窗口计算,允许你在一个滑动的窗口中进行计算,所有这些窗口操作都需要两个参数 - windowLength和slideInterval。(窗口长度 - 窗口的持续时间,滑动间隔 - 执行窗口操作的间隔)
比如说我们现在要每隔2秒,统计前3秒内每一个单词出现的次数,这个时候就需要用这个窗口函数了;
一般我们可以这么写:reduceByKeyAndWindow(_+_,Seconds(3), Seconds(2)),每隔2秒(后面的2秒),统计前3秒的数据(前面的3秒),但是这个时候会有一个问题,当slideInterval>windowLength的时候,从图中可以看到time3会被计算2次,也就是说两个统计的部分会有重复,那这个怎么解决呢?不用急, 我们可以用reduceByKeyAndWindow的另一个重载的方法reduceByKeyAndWindow(_+_,_-_,Seconds(3s),seconds(2)).这个方法的意思,我们可以不用重新获取或者计算,而是通过获取旧信息来更新新的信息,这样即节省了空间又节省了内容,并且效率也大幅提升.下面我们看一下该方法的源码;

那么上图中的计算就变成了:

评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

JasonLee实时计算

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值