
GPT从零到精通
文章平均质量分 83
AIMaynor
个人博客:maynor1024.live,ai网站: vlink.cc/maynorai
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
人工智能考试试卷
正确答案AI是( )的英文缩写Artificial Intelligence图灵测试的功能是什么()测试机器是否具备人类智能人工智能诞生于( )年?1956下列有关人工智能的说法中,不正确的是()。人工智能是以人为载体的智能python的发明者是吉多·范罗苏姆以下哪个不是集成开发工具的优点算法提升python中下载工具包的命令开头是pip installpython字符串是用一对( )括起来的。引号"python 3%2 的计算结果是( )。1python 21//7 的计原创 2024-10-21 09:17:21 · 1415 阅读 · 0 评论 -
五分钟上手Spring AI Alibaba,轻松打造智能聊天应用
spring-ai-alibaba 为 Java 开发者提供了一套开箱即用的开发 AI 应用的工具,帮助开发者快速构建智能应用。原创 2024-09-23 11:11:11 · 1610 阅读 · 0 评论 -
深度学习与大模型第5课:利用 NLTK 中的朴素贝叶斯工具解决实际问题:垃圾邮件过滤
朴素贝叶斯分类器是一种基于贝叶斯定理的概率分类器,它假设特征之间是独立的。尽管这种独立性假设在实际应用中往往并不成立,但朴素贝叶斯分类器仍然在许多NLP任务中表现良好,尤其是当我们处理高维稀疏数据(如文本)时。通过本案例,我们学习了如何使用NLTK中的朴素贝叶斯分类器来进行文本分类任务。尽管本文的示例数据和模型非常简单,但它展示了如何从文本中提取特征并训练一个基本的分类器。在实际应用中,我们可以进一步优化数据处理和特征选择,以构建更强大的文本分类系统。原创 2024-09-22 09:28:27 · 978 阅读 · 0 评论 -
深度学习与大模型第4课:使用多种模型在Pima印度糖尿病数据集上的分类效果评估
Pima Indians Diabetes 数据集包含了768名女性患者的医疗记录,每条记录包含8个特征,包括怀孕次数、血糖、血压等,目标值为是否患有糖尿病(Outcome: 0 或 1)。逻辑斯谛回归:表现均衡,测试集F1分数略高于其他模型,适合应用于特征较为线性的任务。支持向量机:尽管在训练集上表现良好,但在测试集上泛化能力有所欠缺。决策树:对于非线性数据,决策树在训练集表现出色,但在测试集上的表现略逊。原创 2024-09-08 16:53:45 · 1278 阅读 · 0 评论 -
深度学习与大模型第3课:线性回归模型的构建与训练
在这篇博客中,我们学习了如何使用numpy手动实现线性回归,以及如何利用scikit-learn快速实现相同的功能。我们还深入探讨了不同的梯度下降方法,包括批量梯度下降、随机梯度下降和小批量梯度下降,并通过可视化比较了它们的性能。通过这些实现和比较,我们不仅可以更深入地理解线性回归的原理,还能体会到使用成熟库的便利性,以及不同优化方法的特点。这些知识对于理解更复杂的机器学习算法和深度学习模型都是非常有帮助的。希望这篇教程对你有所帮助!如果你有任何问题,欢迎在评论区留言。原创 2024-09-07 21:55:33 · 1104 阅读 · 0 评论 -
深度学习与大模型第2课:机器学习实战
通过这篇文章,我们简要介绍了如何使用Python和常见机器学习库(如Scikit-Learn、TensorFlow)进行模型训练和评估。希望这些实战示例能够帮助读者更好地理解机器学习的基本原理和操作流程。原创 2024-09-01 17:33:30 · 1475 阅读 · 0 评论 -
深度学习与大模型第1课环境搭建
链接:https://pan.baidu.com/s/1Na2xOFpBXQMgzXA93PJJYQ?链接:https://pan.baidu.com/s/1Gp-C_mzmJ_C3pSe3i1SWKw?如果遇到其他问题,建议检查错误信息,并根据提示进行相应的修改。路径:C盘 - 用户 - 电脑名 -打开 Anaconda Prompt。来自百度网盘超级会员V5的分享。来自百度网盘超级会员V5的分享。按需添加或修改环境变量。原创 2024-08-31 12:25:14 · 1240 阅读 · 0 评论 -
5分钟教你用AI把老照片动起来,别再去花49块9的冤枉钱了
另一方面,也是因为我之前写的那篇松尾公用AI视频复活爱人的文章,被各大媒体转载&洗稿,又破了一次圈,让很多人看到,原来,AI还能做这么又意义的事。这里我们基本上,用的都是快手可灵,因为他是国内唯一一个跟Sora同架构的DiT模型,效果最好,也是中国模型,对亚洲人识别奇佳。没开会员的,选高清就行,要是有会员的,可以用超清或者AI超清,对于老照片来说,其实区别不大。原创 2024-07-04 12:04:16 · 19433 阅读 · 17 评论 -
帮粉丝用gpt写代码生成一个文字视频
texts = [(“在昏暗的练武场中,两位身影在微弱的灯光下交错移动。”, 0),(“一位身穿黑色夜行衣的剑客,手持长剑,剑尖在空气中划出一道道寒光。”, 4),(“他的对手,一位身着白色练功服的武者,双手如闪电般出击,每一次攻击都带着破空之声。”, 8),(“剑客的剑法凌厉而精准,每一剑都直指要害,但白衣武者身形灵活,巧妙地躲闪着每一次攻击。”, 12),(“他的眼神冷静而坚定,似乎在寻找着对手的破绽。”, 16),原创 2024-06-30 14:25:12 · 1109 阅读 · 0 评论 -
苹果AI一夜颠覆所有,Siri史诗级进化,内挂GPT-4o
刚刚,苹果AI,正式交卷!今天,今天加州现场的阳光明媚又热烈,将衣服晒得滚烫。在动感的暖场音乐后,库克出来跟现场观众交流互 动,之后整个Keynote所有现场媒体和开发者仍然是围坐在一起“看录播视频”。原创 2024-06-11 12:14:51 · 1227 阅读 · 14 评论 -
如何用 Electron 打包chatgpt-plus.top并生成mac客户端
搞定!现在你不仅成功地打包了你的 Electron 应用,还可以自豪地跟朋友们吹嘘你在技术上的突破。希望这篇幽默的小教程能帮你顺利度过这个坑。祝你开发愉快,bug 少少!如果遇到任何问题,欢迎留言,我们一起哈哈大笑,共同解决!原创 2024-06-03 10:52:18 · 1180 阅读 · 10 评论 -
无法拒绝!GPT-4o 完美适配安卓手机,畅享丝滑体验
人工智能的飞速发展,给我们的生活带来了前所未有的便利。作为AI技术的代表之一,ChatGPT凭借其强大的自然语言处理能力,已经成为许多用户日常生活和工作中的得力助手。本文将详细介绍如何将GPT-4o完美装入安卓手机,实现流畅访问的全过程。无论是安卓手机还是桌面客户端 如果有需要都可以点击上方的资源下载即可或私信我免费领取~原创 2024-06-02 13:17:11 · 4637 阅读 · 21 评论 -
无法拒绝!GPT-4o 完美接入 苹果手机,Siri 更有趣
请按照以下步骤操作,确保成功配置,让你的 iPhone 成为生产力,体验到 GPT-4o 带来的便捷与乐趣。使用要注意遵守法律法规,只能学习什么的,切记不要违法犯罪,网络不是法外之地,不要说不该说的话,否则后果自负。你就直接说你的问题,他就会回答,有时候因为网络连接不好,可能GPT语音不太顺利,建议用文本。在指令的第一个“文本”框中输入您的 API Key 令牌,确保是以“sk-”开头的字符串。然后你说你快捷指令的名字,比如你的快捷指令名字改成 “小G” 了,我就说 小G。原创 2024-05-30 21:04:04 · 3800 阅读 · 2 评论 -
从零开始:如何用Electron将chatgpt-plus.top 打包成EXE文件
通过以上步骤,我们成功地将https://chatgpt-plus.top/打包成了一个带有自定义图标的桌面应用程序。这个过程既有趣又令人兴奋。快去炫耀你的新技能吧!祝你玩得开心,项目顺利!希望你喜欢这篇有趣的教程。如果你有任何问题或建议,欢迎在评论区留言。🎉。原创 2024-05-30 11:15:36 · 1259 阅读 · 1 评论 -
情人节必备,定制520专属智能体有手就行!
在这个充满爱意的 520 情人节,打造一个独特而贴心的智能体,为情侣们提供专属的服务和帮助。通过一系列的步骤和精心的设置,让这个智能体能够成为 520 节日里的得力助手,为大家带来更加美好的体验。接下来,就一起深入了解如何创建这个特别的 520 专属智能体。原创 2024-05-20 11:26:05 · 525 阅读 · 1 评论 -
【2024最新】史上最强AI-GPT4o国内保姆级使用教程
注意:购买云服务器,一定要选择CentOS系统,版本选择默认的就行。手机验证码平台:https://grizzlysms.com/cn。网址:https://www.xiangcaoyun.com/2.支持GPT+GPTs+MJ+Claude3的key密钥。plus代充值平台:https://eylink.cn/因内地服务器备案流程复杂,这里选择无需备案的香港服务器。西部数码:https://www.west.cn/6推荐:香草云,性价比高,安全稳定,本人常用。6.suno 音乐模型(创作歌曲)原创 2024-05-19 17:30:10 · 2681 阅读 · 5 评论 -
探索 api.maynor1024.live:一站式 AI 服务平台
而在这个领域中,MaynorAI 作为一家提供 AI 接口聚合管理服务的平台,引起了我的浓厚兴趣。总的来说,MaynorAI 平台通过其一站式 AI 服务、价格优势、稳定性、性能保障、资源整合和客户服务,为用户提供了一个优质的 AI 开发和应用平台。相比其他 AI 服务提供商,MaynorAI 的价格更为亲民,使得更多人能够享受到 AI 技术带来的便利和价值。最后,MaynorAI 平台的客户服务团队以客户至上为原则,为用户提供专业的技术保障。这种及时、专业的客户服务为用户提供了更好的使用体验。原创 2024-05-18 18:05:21 · 2249 阅读 · 11 评论 -
十个最适合论文写作的GPTs及其应用
这些GPTs涵盖了论文写作中的论文搜索、撰写、评审、改写润色等论文写作的各个阶段,这些工具不仅可以节省我们撰写和评审论文的时间,在很大程度上还可以提高论文的质量,能够真正有效地辅助我们的论文写作过程。不管是概述数据科学研究,比如列出机器学习论文的亮点,还是指出计算机科学研究的不足之处,这个工具都能派上用场。在处理涉及事实核查的论文时,这个工具能够帮助你理解并解读相关的研究。无论是重述摘要,简化文本,还是准确地改写某一部分内容,它都能提供有效的帮助,名副其实的文献综述神器。自行创建属于自己的GPTs。原创 2024-05-12 14:36:35 · 6030 阅读 · 17 评论 -
史上最简单的大模型教程之案例:哄哄模拟器(二)
平时就要像欧美群发邮件那样,多写“小作文”,这样不仅 prompt 能力提升,沟通能力也会变强!如果知道训练数据是怎样的,参考训练数据来构造 prompt 是最好的。基于 AI 技术,你需要使用语言技巧和沟通能力,在限定次数内让对方原谅你,这并不容易。「试」是常用方法,确实有运气因素,所以「门槛低、 天花板高」。有时一字之差,对生成概率的影响都可能是很大的。找到好的 prompt 是个持续迭代的过程,需要不断调优。Prompt 写得好的人,和人的沟通能力也提升了。欧美的「群发邮件」习惯,更占优势。原创 2024-05-10 09:33:33 · 757 阅读 · 0 评论 -
史上最简单给大模型注入新知识的方法(一)
先执行 pip install --upgrade openai。原创 2024-05-08 09:43:34 · 535 阅读 · 0 评论 -
如何配置 OpenAI 环境变量
操作步骤.env.env输入如下代码sk-xxx/v1注意事项。原创 2024-05-07 16:36:35 · 3400 阅读 · 0 评论 -
使用 LlamaIndex 和 Llama 2-Chat 构建知识驱动的对话应用程序
在这篇文章中,演示如何使用 LlamaIndex 和 LLM 创建基于 RAG 的应用程序。下图显示了以下各节中概述的该解决方案的分步架构。RAG 将信息检索与自然语言生成相结合,以产生更有洞察力的响应。出现提示时,RAG 首先搜索文本语料库以检索与输入最相关的示例。在响应生成过程中,模型会考虑这些示例来增强其功能。通过合并相关检索到的段落,与基本生成模型相比,RAG 响应往往更加真实、连贯且与上下文一致。原创 2024-04-30 10:16:26 · 2710 阅读 · 5 评论 -
Coze 识别用户意图
你可以在编辑页面左侧的插件列表内,搜索并添加 get_current_weather 工具节点(用于查询天气)、getToutiaoNews 工具节点(用于获取新闻)。当用户输入内容后,Bot 会调用示例工作流处理任务,并向用户返回处理结果。本文将通过 LLM 节点、Condition 节点和插件节点构建一个用于识别用户意图的工作流。使用 Condition 节点判断用户输入数据的类型,并分支处理。,会将数据流转至 LLM 节点和获取天气工具节点,获取地区天气。,会将数据流转至获取新闻工具节点,获取新闻。原创 2024-04-10 16:40:36 · 3636 阅读 · 0 评论 -
使用Coze工作流(二)
你可以在 Code 节点内使用 IDE 工具,通过 AI 自动生成代码或编写自定义代码逻辑,来处理输入参数并返回响应结果。LLM 节点是扣子提供的基础节点之一,你可以使用该节点的大语言模型处理文本生成任务。创建工作流后,你可以通过拖拽的方式将节点添加到画布内,并按照任务执行顺序连接节点。工作流提供了基础节点供你使用,除此之外,你还可以添加插件节点来执行特定任务。清晰明确的工作流名称和描述,有助于大语言模型更好的理解工作流的功能。该节点是一个 if-else 节点,用于设计工作流内的分支流程。原创 2024-04-03 18:03:54 · 7851 阅读 · 0 评论 -
Coze工作流介绍(一)
工作流支持通过可视化的方式,对插件、大语言模型、代码块等功能进行组合,从而实现复杂、稳定的业务流程编排,例如旅行规划、报告分析等。当目标任务场景包含较多的步骤,且对输出结果的准确性、格式有严格要求时,适合配置工作流来实现。功能概述工作流由多个节点构成,节点是组成工作流的基本单元。例如,大语言模型 LLM、自定义代码、判断逻辑等节点。工作流默认包含了Start节点和End节点。Start节点是工作流的起始节点,可以包含用户输入信息。End节点是工作流的末尾节点,用于返回工作流的运行结果。原创 2024-04-03 17:39:06 · 3954 阅读 · 0 评论 -
ErnieRAG:用ErnieBot打造企业级RAG应用
本文介绍了如何使用ErnieBot和Milvus向量数据库打造企业级RAG(检索增强生成)应用。RAG架构通过将大模型的生成能力与外部知识库的检索能力相结合,实现了在回答问题或执行任务时能够引入最新、最准确的专业知识。文章详细阐述了RAG的原理和环境安装,包括ErnieBot的配置和Embedding模型的选择。同时,还介绍了文本生成模型的选择、知识库数据的准备、向量数据库的启动、数据表的创建、索引和加载数据库、插入数据以及检索数据等步骤。最终,通过检索数据,验证RAG应用的有效性。原创 2024-03-23 16:41:02 · 1521 阅读 · 1 评论 -
FastGPT知识库结构讲解
因此,FastGPT 采用了多向量映射的方式,将一组数据映射到多组向量中,从而保障数据的完整性和语义的丰富度。影响向量搜索精度的因素非常多,主要包括:向量模型的质量、数据的质量(长度,完整性,多样性)、检索器的精度(速度与精度之间的取舍)。人类的文字、图片、视频等媒介是无法直接被计算机理解的,要想让计算机理解两段文字是否有相似性、相关性,通常需要将它们转成计算机可以理解的语言,向量是其中的一种方式。你可以为一组较长的文本,添加多组向量,从而在检索时,只要其中一组向量被检索到,该数据也将被召回。原创 2024-03-15 11:32:50 · 4081 阅读 · 0 评论 -
提升工作效率:探索AmazonQ预览版,开发者的生成式AI助手
这将打开带有对话界面的网络体验,以与量身定制的 Amazon Q AWS Blog 专家聊天。在最后一步中,你将需要部署 Amazon Q 网络体验。你可以使用 IAM 集成符合 SAML 2.0 标准的外部身份提供者(IdP)。Amazon Q 可以与任何符合 SAML 2.0 标准的 IdP 一起使用。Amazon Q 使用服务发起的单点登录(SSO)对用户进行身份验证。原创 2024-03-08 10:15:57 · 1079 阅读 · 1 评论 -
告别信息搜寻烦恼:用fastgpt快速部署国内大模型知识库助手
FastGPT 使用了 one-api 项目来管理模型池,其可以兼容 OpenAI 、Azure 、国内主流模型和本地模型等。原创 2024-03-04 15:50:20 · 3810 阅读 · 0 评论 -
基于PAI-DSW使用SD WebUI实现AI扩图功能
在本教程中,您将学习如何在阿里云交互式建模(PAI-DSW)中,使用实现AI扩图功能。随着AIGC技术的落地发展,越来越多的创新玩法闯进了我们视野,AI扩图便是其中之一。只需给AI一张图片,AI就会根据图像的上下文语义信息,预测和补充图像边界,生成一张尺寸更大的图像。AI扩图有时是拯救废片的神器,能够将半身照扩展为惊艳的全身照,有时也会翻车,生成的图像让人哭笑不得。👍 新用户可免费领取价值万元的试用资源👍 学会如何快速在阿里云上创建一个交互式训练开发环境。👍 学会如何在DSW中启动WebUI。转载 2024-01-18 17:15:18 · 466 阅读 · 0 评论 -
魔搭社区LLM模型部署实践, 以ChatGLM3为例(二)
Xinference支持大语言模型, 语音识别模型, 多模态模型的部署, 简化了部署流程, 通过一行命令完 成模型的部署工作。并支持众多前沿的大语言模型, 结合GGML技术, 支持多端部署。chatglm.cpp的github地址是:https://github.com/li-plus/chatglm.cpp。魔搭社区和Xinference合作, 提供了模型GGML的部署方式, 以ChatGLM3为例。之后再Launch Model中搜索刚刚创建的模型名称, 点击火箭标识运行即可使用。原创 2023-11-12 00:00:00 · 1260 阅读 · 0 评论 -
魔搭社区LLM模型部署实践, 以ChatGLM3为例(一)
同时从部署页面进入云资 源管理页面,。另外除了在ModelScope上能设置基础的部署配置以外, 部署完成以后, 也点击计算资源名称( 以 EAS为例), 进入云资源管理页面, 进行更多的操作, 比如支持扩缩容策略, 配置高速链接等。选择SwingDeploy部署模型, 选择模型, 如智谱AI提供的ChatGLM3, 系统会自动匹配该模型最新的 版本, 以及推荐的部署资源规格。点击一键部署, 系统将从社区拉取模型, 并打包成镜像部署到指定配置的实例, 根据模型大小和实例 类型, 部署通常几分钟内能完成。原创 2023-11-12 00:00:00 · 824 阅读 · 2 评论 -
完蛋我被大模型包围了的题目
本文章开始写的时候是2023年11月6日21:14,这个小游戏此时有6000用户、400并发,目前用户还在每2秒一个的增长,但是我的服务器只有300M内存了。我把题目给了几个好朋友玩了一下,他们觉得好玩,于是我就加了一下日志的功能,把网站放到了80端口上,然后就准备随缘了,就好像我的那个妙猫馆小程序一样。我很努力的想让每一个人都开心,不过我逐渐意识到,真要搞一个严肃的自传播游戏实在不是在我一个人的能力范围内了。请输入一个本身不是回文串的问题,使正着问和倒着问的时候,模型的回答本身不回文且也是逆序的关系。转载 2023-11-11 16:52:15 · 696 阅读 · 0 评论 -
AI全栈大模型工程师(二十一)LangChain和SemanticKernel怎么选
%% mdLangChain.js 和 LangChain 保持了概念一致,功能丰富,很适合前端同学使用Semantic Kernel 架构设计更好,未来发展潜力更大,值得跟踪、尝试趁它们都还不完善,正是参与开源软件建设的好时机#%% md。原创 2023-11-11 16:33:30 · 655 阅读 · 0 评论 -
GPTs 今日上线:OpenAI杀死了初创公司
此次更新带来了四个维度的改进: 1. GPT-4 Turbo:这是一个更快、更高效的GPT模型,可以处理更大规模的输入和输出。面对OpenAI快速发布的版本,初创企业需要采取一些措施来应对挑战: 1. 持续关注技术动态:初创企业需要关注OpenAI的最新动态,了解其发布的新技术、新功能以及可能带来的影响。以下是一些例子: 1. 将草图变成网页:开发者可以利用GPT的能力,将手绘的草图转换为一个完整的网站设计。将草图变成网页:开发者可以利用GPT的能力,将手绘的草图转换为一个完整的网站设计。原创 2023-11-10 14:29:07 · 181 阅读 · 0 评论 -
大模型(LLMs)算法工程师的面试题
大模型(LLMs)基础面 大模型(LLMs)进阶面 大模型(LLMs)微调面 大模型(LLMs)langchain面 大模型(LLMs)参数高效微调(PEFT) 面 大模型(LLMs)推理面 大模型(LLMs)评测面 大模型(LLMs)强化学习面 大模型(LLMs)软硬件配置面 大模型(LLMs)训练集面 大模型(LLMs)显存问题面 大模型(LLMs)分布式训练面 大模型(LLMs)agent 面 Token及模型参数准备篇 LLMs 位置编码篇 LLMs Tokenizer 篇 Layer Normal原创 2023-11-09 12:29:38 · 381 阅读 · 0 评论 -
GPT-4 Alpha:OpenAI的革命性升级
GPT-4 Alpha版本是基于OpenAI前作的升级版。它继承了之前版本的所有功能,并在此基础上进行了优化和扩展。这个版本的最大亮点是其无限使用策略——除非OpenAI另有规定,否则用户可以永久使用GPT-4的所有功能。GPT-4 Alpha版本的推出,标志着AI技术的又一次重大进步。尽管存在一些局限,但它的高级功能和应用潜力是不容忽视的。未来,我们有理由相信,随着技术的不断进步,GPT-4 Alpha将在我们的生活和工作中发挥更加重要的作用。原创 2023-11-07 09:20:41 · 3465 阅读 · 16 评论 -
AI全栈大模型工程师(一)目标
当然,「全栈」涉及的知识面非常广,我们这区区一门课不可能全部涉及。我们能做到的是,在各个方向上都为大家打开一扇门,带大家入门。想走得更深更远,要靠大家自己,和我们的社群。的超级个体,会是 AGI 时代最重要的人。所以我们提出了「AI 全栈工程师」这个概念,让它显得不那么浮夸。但是,「入门」并不代表简单、肤浅。每个人要根据自己的特点、目标和机遇,选择自己的方向。在全栈的知识面上,一个人把三层全占满是不太可能的。这门课的目标,就是培养「AI 全栈」。就不会举一反三,走不了太远。就只能纸上谈兵,做事不落地。原创 2023-10-16 19:04:06 · 657 阅读 · 5 评论 -
大模型学习路线与建议
LLaMA 系列模型核心原理详解(LLaMA/Alpaca/Vicuna/BaiChuan/LLaMA2/BaiChuan2)大模型Tuning技术详解(Prompt-Tuning/Instruction-Tuning/P-Tuning)GPT 系列模型核心原理详解(GPT1/GPT2/GPT3/GPT4/InstructGPT)大模型RLHF技术详解(PPO/DeepSpeed-Chat)BLOOM 系列模型核心原理详解(BLOOM/BLOOMZ)通用大模型微调代码开发(支持多模型/多框架)原创 2023-10-16 11:18:18 · 2505 阅读 · 0 评论 -
AI绘画普及课【二】图生图
在文生图中我们看到,AI文生图是有一定的随机性的,画出来的东西不一定完全满足我们的需求。不同的随机种子,出来的效果当然是随机性强的,但如果你使用的是同一个随机种子,那生成的图像里就必然会存在很多的相似之处,因为它是用同一套方法随机出来的。AI生成画面是随机的,但它的每一次生成都有自己的一套描绘方式,而这个描绘方式,就会被记录成一组随机数,这个东西,我们就把它叫做一个随机种子。从它的视角看,你说AI绘画是抽卡其实基本是正确的,因为你每生成一次,就会得到一个随机种子。有的种子效果好,有的种子效果差。原创 2023-09-27 00:00:00 · 1087 阅读 · 0 评论