《------往期经典推荐------》
AI应用软件开发实战专栏【链接】
Baumer高防护相机如何通过YoloV8深度学习模型实现社交距离的检测识别(C#代码UI界面版)
工业相机使用YoloV8模型实现社交距离的检测识别
本项目集成了 YOLOv8 检测模型 与 C#图形界面工具,实现了包括图片、文件夹、视频与摄像头等多种输入方式的实现社交距离的检测识别。
Baumer工业相机堡盟相机是一种高性能、高质量的工业相机,可用于各种应用场景,如物体检测、计数和识别、运动分析和图像处理。
Baumer的万兆网相机拥有出色的图像处理性能,可以实时传输高分辨率图像。此外,该相机还具有快速数据传输、低功耗、易于集成以及高度可扩展性等特点。
Baumer工业相机由于其性能和质量的优越和稳定,常用于高速同步采集领域,通常使用各种图像算法来提高其捕获的图像的质量。
本文以Baumer工业相机作为案例进行演示,实现将工业相机的图像或者本地图像夹导入Yolo模型从而实现社交距离的检测识别等功能。
工业相机通过YoloV8模型实现社交距离的检测识别的技术背景
本文通过C#中实现一个简单的UI界面,用于将YoloV8模型实现社交距离的检测识别
。
用户可以通过该界面执行以下操作:
-
转换相机图像为Mat图像:通过YoloV8模型实现社交距离的检测识别
-
转换本地图像为mat图像:通过YoloV8模型实现社交距离的检测识别
通过这个UI界面,用户能够在实时应用机器视觉数据处理时快速有效地进行操作,无需深入了解图像数据的底层处理过程。这个简单的介绍旨在为开发人员提供一个明确的方向,以便开始构建此类应用程序,并且该程序主要用于演示目的。
在相机SDK中获取图像转换图像的代码分析
本文介绍使用Baumer工业相机,实现将图像转换为Bitmap图像,再转换Mat图像,导入到Yolo模型进行推理,输出实现社交距离的检测识别的结果。
工业相机图像转换Bitmap图像格式和Mat图像重要核心代码
//将相机内部图像内存数据转为bitmap数据
System.Drawing.Bitmap bitmap = new System.Drawing.Bitmap((int)mBufferFilled.Width, (int)mBufferFilled.Height,(int)mBufferFilled.Width,System.Drawing.Imaging.PixelFormat.Format8bppIndexed, (IntPtr)((ulong)mBufferFilled.MemPtr + mBufferFilled.ImageOffset));
#region//Mono图像数据转换。彩色图像数据转换于此不同
System.Drawing.Imaging.ColorPalette palette = bitmap.Palette;
int nColors = 256;
for (int ix = 0; ix < nColors; ix++)
{
uint Alpha = 0xFF;
uint Intensity = (uint)(ix * 0xFF / (nColors - 1));
palette.Entries[ix] = System.Drawing.Color.FromArgb((int)Alpha, (int)Intensity,(int)Intensity, (int)Intensity);
}
bitmap.Palette = palette;
#endregion
string strtime = DateTime.Now.ToString("yyyyMMddhhmmssfff");
string saveimagepath = pImgFileDir + "\\" + strtime + ".brw";
//使用Bitmap格式保存
bitmap.Save(saveimagepath, System.Drawing.Imaging.ImageFormat.Bmp);
//用bitmap转换为mat
OpenCvSharp.Mat Matgray1 = OpenCvSharp.Extensions.BitmapConverter.ToMat(bitmap);
本地文件图像转换Bitmap图像格式和Mat图像重要核心代码
C#环境下代码如下所示:
if (imagePaths.Count() == 0)
{
LoadImagePaths("test_img");
}
string currentImagePath = imagePaths[currentImageIndex];
// 显示到pictureBoxA
pictureBoxA.Image.Dispose(); // 释放上一张图片资源,避免内存泄漏
pictureBoxA.Image = new Bitmap(currentImagePath);
image_path = currentImagePath;
currentImageIndex = (currentImageIndex + 1) % imagePaths.Count;
OnNotifyShowRecieveMsg("检测中,请稍等……");
//textBox1.Text = "检测中,请稍等……";
//pictureBox2.Image = null;
Application.DoEvents();
image = new Mat(image_path);
float ratio = Math.Min(1.0f * inpHeight / image.Rows, 1.0f * inpWidth / image.Cols);
int neww = (int)(image.Cols * ratio);
int newh = (int)(image.Rows * ratio);
Mat dstimg = new Mat();
Cv2.Resize(image, dstimg, new OpenCvSharp.Size(neww, newh));
Cv2.CopyMakeBorder(dstimg, dstimg, 0, inpHeight - newh, 0, inpWidth - neww, BorderTypes.Constant);
Mat图像导入YoloV8模型重要核心代码
C#环境下代码如下所示:
// 定义 ONNX 模型的路径
string onnxModelPath = "Gesture-and-Fingertip_detection.onnx";
// 定义输入图像的形状
OpenCvSharp.Size inputShape = new OpenCvSharp.Size(640, 640);
// 从 ONNX 模型文件加载网络
if(net==null)
net = CvDnn.ReadNetFromOnnx(onnxModelPath);
string[] modelClassify = {"Fingertip"};
if (imagePaths.Count() == 0)
{
LoadImagePaths("test_img");
}
string currentImagePath = imagePaths[currentImageIndex];
// 显示到pictureBoxA
pictureBoxA.Image.Dispose(); // 释放上一张图片资源,避免内存泄漏
pictureBoxA.Image = new Bitmap(currentImagePath);
image_path = currentImagePath;
if (pictureBoxA.Image == null)
{
return;
}
currentImageIndex = (currentImageIndex + 1) % imagePaths.Count;
OnNotifyShowRecieveMsg("检测中,请稍等……");
Application.DoEvents();
image = new Mat(image_path);
dt1 = DateTime.Now;
// 调用识别图像的函数,并传入图像路径、阈值、网络、输入形状和分类类别列表
//result_image = Recognize(image, 0.35, net, inputShape, modelClassify);
result_image = RecognizeMat(image, 0.35, net, inputShape, modelClassify);
// 获取计算结束时间
dt2 = DateTime.Now;
// 显示输出的图像
pictureBoxA.Image = new Bitmap(result_image.ToMemoryStream());
// 显示推理耗时时间
OnNotifyShowRecieveMsg("推理耗时:" + (dt2 - dt1).TotalMilliseconds + "ms");
static Mat RecognizeMat(Mat imgInput, double threshold, Net net, OpenCvSharp.Size inputShape, string[] modelClassify)
{
using (Mat img = imgInput)
{
int inpHeight = inputShape.Height; // 输入图像的高度
int inpWidth = inputShape.Width; // 输入图像的宽度
// 对图像进行预处理,调整尺寸
Mat image = img;
float ratio = Math.Min(1.0f * inpHeight / image.Rows, 1.0f * inpWidth / image.Cols);
int neww = (int)(image.Cols * ratio);
int newh = (int)(image.Rows * ratio);
//// 将图像调整为模型需要的大小
//Mat dstimg = new Mat();
//Cv2.Resize(image, dstimg, new OpenCvSharp.Size(neww, newh));
//Cv2.CopyMakeBorder(dstimg, dstimg, 0, inpHeight - newh, 0, inpWidth - neww, BorderTypes.Constant);
//Mat BN_image = CvDnn.BlobFromImage(dstimg); // 将调整后的图像转换为Blob格式
//// 配置图片输入数据 // 将 blob 设置为网络的输入
//net.SetInput(BN_image);
//// 从图像生成用于网络输入的 blob
//Mat blob = CvDnn.BlobFromImage(img, 1 / 255.0, inputShape, new Scalar(0, 0, 0), false);
////Mat blob = CvDnn.BlobFromImage(img, 1.0 / 255.0, inputShape, new Scalar(0, 0, 0), true, false);
// 将 blob 设置为网络的输入
//net.SetInput(blob);
//// 从图像生成用于网络输入的 blob
Mat img0 = img;
Mat blob0 = CvDnn.BlobFromImage(img0, 1 / 255.0, new OpenCvSharp.Size(inputShape.Width, inputShape.Height), swapRB: true, crop: false);
net.SetInput(blob0);
// 执行前向传播获取输出
Mat output = net.Forward();
// 此处可能需要根据 C# 中 OpenCV 的特性来处理转置操作
output = ReshapeAndTranspose(output);
// 获取图像的行数(高度)
int height = img.Height;
// 获取图像的列数(宽度)
int width = img.Width;
// 计算宽度的缩放因子
double xFactor = (double)width / inputShape.Width;
// 计算高度的缩放因子
double yFactor = (double)height / inputShape.Height;
// 初始化分类类别、得分和检测框的列表
List<string> classifys = new List<string>();
List<float> scores = new List<float>();
List<Rect> boxes = new List<Rect>();
List<Double> maxVales = new List<Double>();
List<OpenCvSharp.Point> maxloces = new List<OpenCvSharp.Point>();
// 遍历输出的行
for (int i = 0; i < output.Rows; i++)
{
// 获取当前行的检测框数据
using (Mat box = output.Row(i))
{
// 在框数据的特定范围中找到最小值、最大值及其位置
OpenCvSharp.Point minloc, maxloc;
double minVal, maxVal;
// Mat classes_scores = box.ColRange(4, 5);//GetArray(i, 5, classes_scores);
// double curmates0 = box.At<float>(0);
double curmates1 = box.At<float>(4);
int collength = box.Cols;
int rowlength = box.Rows;
Mat curmates = box.ColRange(4, box.Cols);
//Cv2.MinMaxLoc(box.ColRange(4, box.Cols), out minVal, out maxVal, out minloc, out maxloc);
Cv2.MinMaxLoc(box.ColRange(4, box.Cols), out minVal, out maxVal, out minloc, out maxloc);
int classId = maxloc.Y;
if (classId == 0)
{
// 获取对应类别的得分
float score = (float)maxVal;
// 如果得分大于阈值
if (score > threshold)
{
// 将得分添加到得分列表
scores.Add(score);
// 将类别添加到类别列表
classifys.Add(modelClassify[classId]);
// 获取框的原始坐标
float x = box.At<float>(0, 0);
float y = box.At<float>(0, 1);
float w = box.At<float>(0, 2);
float h = box.At<float>(0, 3);
// 计算调整后的坐标
int xInt = (int)((x - 0.5 * w) * xFactor);
int yInt = (int)((y - 0.5 * h) * yFactor);
int wInt = (int)(w * xFactor);
int hInt = (int)(h * yFactor);
// 将调整后的框坐标添加到框列表
boxes.Add(new Rect(xInt, yInt, wInt, hInt));
}
}
}
}
// 执行非极大值抑制操作
int[] indices;
CvDnn.NMSBoxes(boxes, scores, 0.25f, 0.45f, out indices);
// 遍历非极大值抑制操作后的索引
foreach (int i in indices)
{
// 获取对应的类别、得分和框
string classify = classifys[i];
float score = scores[i];
Rect box = boxes[i];
// 获取框的坐标和尺寸
// 在图像上绘制矩形框
Cv2.Rectangle(img, box, new Scalar(0, 255, 0), 3);
// 生成类别和得分的标签文本
string label = $"{classify}: {score:F2}";
// 在图像上添加标签文本
Cv2.PutText(img, label, new OpenCvSharp.Point(box.X, box.Y - 10), HersheyFonts.HersheySimplex, 0.5, new Scalar(0, 255, 0), 2);
}
// 将图像复制输出返回
Mat result_image0 = img.Clone();
return result_image0;
// 将处理后的图像保存为文件
// Cv2.ImWrite("result.jpg", img);
}
}
下面是detection.py的代码
# import the necessary packages
from .config import NMS_THRESH, MIN_CONF, People_Counter
import numpy as np
import cv2
def detect_people(frame, net, ln, personIdx=0):
# grab the dimensions of the frame and initialize the list of
# results
(H, W) = frame.shape[:2]
results = []
# construct a blob from the input frame and then perform a forward
# pass of the YOLO object detector, giving us our bounding boxes
# and associated probabilities
blob = cv2.dnn.blobFromImage(frame, 1 / 255.0, (416, 416),
swapRB=True, crop=False)
net.setInput(blob)
layerOutputs = net.forward(ln)
# initialize our lists of detected bounding boxes, centroids, and
# confidences, respectively
boxes = []
centroids = []
confidences = []
# loop over each of the layer outputs
for output in layerOutputs:
# loop over each of the detections
for detection in output:
# extract the class ID and confidence (i.e., probability)
# of the current object detection
scores = detection[5:]
classID = np.argmax(scores)
confidence = scores[classID]
# filter detections by (1) ensuring that the object
# detected was a person and (2) that the minimum
# confidence is met
if classID == personIdx and confidence > MIN_CONF:
# scale the bounding box coordinates back relative to
# the size of the image, keeping in mind that YOLO
# actually returns the center (x, y)-coordinates of
# the bounding box followed by the boxes' width and
# height
box = detection[0:4] * np.array([W, H, W, H])
(centerX, centerY, width, height) = box.astype("int")
# use the center (x, y)-coordinates to derive the top
# and and left corner of the bounding box
x = int(centerX - (width / 2))
y = int(centerY - (height / 2))
# update our list of bounding box coordinates,
# centroids, and confidences
boxes.append([x, y, int(width), int(height)])
centroids.append((centerX, centerY))
confidences.append(float(confidence))
# apply non-maxima suppression to suppress weak, overlapping
# bounding boxes
idxs = cv2.dnn.NMSBoxes(boxes, confidences, MIN_CONF, NMS_THRESH)
# ensure at least one detection exists
if len(idxs) > 0:
# loop over the indexes we are keeping
for i in idxs.flatten():
# extract the bounding box coordinates
(x, y) = (boxes[i][0], boxes[i][1])
(w, h) = (boxes[i][2], boxes[i][3])
# update our results list to consist of the person
# prediction probability, bounding box coordinates,
# and the centroid
r = (confidences[i], (x, y, x + w, y + h), centroids[i])
results.append(r)
# return the list of results
return results
代码实现演示(实现社交距离的检测识别)
源码下载链接
Baumer高防护相机如何通过YoloV8深度学习模型实现社交距离的检测识别(python) 源码
工业相机通过YoloV8模型实现社交距离的检测识别的行业应用
工业相机 + YOLOv8 实现「社交距离检测识别」的 6 大行业应用速览
(信息均来自 2024-2025 年公开项目,含源码、数据集)
场景 | 业务痛点 | 工业相机/硬件形态 | 技术要点 | 现场效果 & 一键资源 |
---|---|---|---|---|
① 工厂车间 | 设备维护、质检时人员过近碰撞风险 | 4K 全局快门 30 fps + 顶装 | YOLOv8 + 像素-物理转换公式 | 报警距离误差 < 10 cm,GitHub 源码 |
② 物流仓库 | 叉车通道人车混行 | 双目 5 MP 工业相机 | YOLOv8-seg + 深度图 | 30 ms/帧,误报 < 1 %,CSDN 案例 |
③ 公交站台 | 候车乘客密集 | 8 K 线阵相机 20 kHz | YOLOv8 + DeepSort 轨迹 | 实时热力图,阿里云方案 |
④ 地铁站安检 | 安检通道排队过近 | 防爆 2 MP 云台相机 | 改进 YOLOv8(BiFPN+Attention) | 识别率 96 %,专利源码 |
⑤ 智慧园区 | 疫情期间人员管控 | 广角 4K + 边缘 GPU | YOLOv8 + 距离阈值联动门禁 | 无需人工巡检,博客园完整系统 |
⑥ 教学/科研 | 低成本算法验证 | USB3.0 120 fps 相机 | PyQt5 GUI + YOLOv8 | CPU 80 ms,一键切换模型 |
关键技术细节
距离公式:实际距离 = (像素距离 × 标定板物理尺寸) / (像素标定长度)
模型:YOLOv8n/s/x + 注意力/轻量化,INT8 量化 3-5 MB
部署:Jetson Orin Nano 15-25 ms/帧;x86 IPC + RTX 3060 8 路并发 <30 W
合规:原始视频 72 h 自动覆盖,仅留事件 JSON,符合《个人信息保护法》