
初学AI与人工智能
文章平均质量分 89
Kali与编程~
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
自然语言处理
神经语言模型是指基于神经网络的方法,通过对单词序列的向量表示进行建模,来计算单词序列出现的概率。在自然语言处理中,事件序列指的是一句话或一篇文章中的单词序列。有监督学习是文本分类中最常用的方法之一,它的主要思路是从已有的文本数据中学习出一个模型,然后用这个模型对新文本进行分类。拼写检查系统通常需要将文本中的每个单词转换为单词序列,然后将这个单词序列作为输入送入语言模型中,以计算该单词出现的概率。在语言模型中,序列到序列模型可以将输入的单词序列映射到输出的单词序列,从而实现文本生成、机器翻译等任务。原创 2023-06-06 21:50:41 · 786 阅读 · 1 评论 -
人工智能之深度学习
在DNN中,每个隐藏层都可以学习不同的特征和模式,从而更好地适应各种复杂的任务。近年来,深度学习在图像识别领域取得了重大的突破,如在2012年ImageNet图像识别挑战赛中,AlexNet网络使用了深度学习的方法,取得了显著的成绩,并引起了深度学习的热潮。在实际应用中,深度学习模型被广泛应用于自然语言处理领域,例如,Google的BERT模型可以进行文本分类、问答、命名实体识别等任务,OpenAI的GPT模型可以进行自然语言生成,Facebook的RoBERTa模型可以进行机器翻译、文本摘要等任务。原创 2023-06-06 21:48:12 · 1618 阅读 · 0 评论 -
人工智能之机器学习
第一章 人工智能概述1.1人工智能的概念和历史1.2人工智能的发展趋势和挑战1.3人工智能的伦理和社会问题第二章 数学基础1.1线性代数1.2概率与统计1.3微积分第三章 监督学习1.1无监督学习1.2半监督学习1.3增强学习第四章 深度学习1.1神经网络的基本原理1.2深度学习的算法和应用第五章 自然语言处理1.1语言模型1.2文本分类1.3信息检索第六章 计算机视觉1.1图像分类1.2目标检测1.3图像分割第七章 强化学习1.1强化学习的基本概念1.2值原创 2023-06-06 21:48:01 · 881 阅读 · 0 评论 -
人工智能数学基础
在人工智能算法中,向量和矩阵常常用来表示数据和特征,矩阵的乘法、转置和逆等操作也是常见的计算方式。特征值和特征向量可以用来描述矩阵的性质,例如,一个矩阵的特征值可以告诉我们矩阵的放缩因子,特征向量可以告诉我们矩阵的方向。概率和统计是人工智能领域中非常重要的数学基础,它们提供了一种描述和分析数据的方法,是人工智能算法中的核心数学工具之一。对于一个 n x n 的矩阵 A,如果存在一个非零向量 v 和一个标量 λ,使得 Av = λv,那么 λ 是 A 的特征值,v 是对应于特征值 λ 的特征向量。原创 2023-06-06 21:46:40 · 1417 阅读 · 1 评论 -
人工智能概述
深度学习的出现和发展,为人工智能的应用和发展提供了新的动力和方向。例如,自动驾驶汽车在遇到复杂的道路情况时,可能会面临道德决策的问题,如何平衡不同的利益和权利,做出正确的决策,是一个需要考虑的伦理和道德问题。例如,在一些场景下,人工智能系统的决策可能会对人类产生深远的影响,因此需要考虑人工智能系统的责任和义务,以及人工智能对社会和人类的影响。解决人工智能的伦理和社会问题,需要政府、企业、学术界和公众的共同努力,加强监管和规范、加强研究和技术创新、加强教育和公众参与,以推动人工智能的可持续和负责任发展。原创 2023-06-06 21:43:56 · 2141 阅读 · 0 评论