
AI大模型从零基础到企业级开发落地
文章平均质量分 95
本专栏聚焦探索分享系统化、全方位的人工智能大模型学习,覆盖基础理论到实战应用。内容从AIGC技术全景透视、Prompt工程技巧,到AI工具实战,再到Langchain框架开发与国产开源大模型GLM落地实践,兼具深度与广度。无论初学者还是进阶开发者,都能找到专属路径,开启大模型深度探索之旅。
寻道AI小兵
10年+互联网架构师,聚焦AI大模型开发实战,分享前沿技术,解锁AI新技能,共探智能未来!
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
AI大模型探索之路-实战篇16:优化决策流程:Agent智能数据分析平台中Planning功能实践
在前面篇章中我们实现了Agent智能数据分析平台中的Tools和Memory两大块,本文中我们将实现Agent智能数据分析平台中最核心的模块Plan,发掘探索人类意图,优化整个决策流程。原创 2024-06-10 20:04:17 · 4316 阅读 · 102 评论 -
AI大模型探索之路-实战篇15: Agent智能数据分析平台之整合封装Tools和Memory功能代码
在前面篇章中我们实现了Agent智能数据分析平台中的Tools和Memory相关代码落地实践,本文中我们将对这两大块功能代码进行整合封装。原创 2024-06-04 07:46:00 · 2529 阅读 · 131 评论 -
AI大模型探索之路-实战篇14: 集成本地Python代码解释器:强化Agent智能数据分析平台
在之前的文章里,我们展示了如何利用大型模型的推理能力和Function Calling技术实现从自然语言到数据查询分析处理的转变。然而,除了依赖大模型自身的能力之外,有时我们还需要处理一些超出大模型能力范围的任务,例如调用本地代码库进行数据的可视化展示。因此,本文将介绍如何通过为Agent智能数据分析平台增添新外挂——Python代码解释器,来进一步增强其能力。原创 2024-06-03 07:30:00 · 4013 阅读 · 135 评论 -
AI大模型探索之路-实战篇13: 从对话到报告:打造能记录和分析的Agent智能数据分析平台
在前面篇章中我们实现了多轮对话控制,本文中我们将实现多轮对话内容的云盘记录,将对话内容记录存储到本地云盘文件夹中;之后再基于对话内容,数据字典、数据库表相关的基本信息实现一个简单的数据分析报告撰写功能原创 2024-06-02 14:52:01 · 1447 阅读 · 17 评论 -
AI大模型探索之路-实战篇12: 构建互动式Agent智能数据分析平台:实现多轮对话控制
在Agent智能数据分析平台的实战开发中,继我们之前关于Function Calling技术整合的讨论之后,本文将专注于实现一个核心功能——多轮对话控制系统。这一机制能够让用户通过自然语言与系统进行连续的交流,从而更准确、更高效地完成数据分析任务。原创 2024-06-01 14:46:27 · 3387 阅读 · 112 评论 -
AI大模型探索之路-实战篇11: Function Calling技术整合:强化Agent智能数据分析平台功能
在数据驱动的时代,拥有一个高效且智能的数据分析平台对企业至关重要。继本系列前文全面解析Agent智能数据分析平台的基础与核心功能后,本文深入讨论平台的实际操作,特别是如何应用Function Calling技术整合数据、提升分析的效率与准确性。实战经验的分享,将助读者构建完善的数据处理流程,利用Function Calling增强数据质量与分析精度,同时探索结合大模型API以提供传统及智能化分析服务,从而大幅提升决策支持能力。原创 2024-05-30 07:30:00 · 3956 阅读 · 178 评论 -
AI大模型探索之路-实战篇10:数据预处理的艺术:构建Agent智能数据分析平台的基础
在当今数据驱动的商业环境中,一个高效且智能的数据分析平台对于企业的成功至关重要。本系列文章已经介绍了Agent智能数据分析平台的基础架构和核心功能,本文将深入探讨平台的数据预处理步骤,这一步骤是实现高质量数据分析的关键。我们将重点讨论如何获取、处理并存储数据,以提升分析的效率和准确性。通过本文的介绍和指导,我们已经能够构建出一个具备完整数据处理流程的Agent智能数据分析平台。从数据的预处理到存储管理,每一步都旨在提升数据的质量及分析的准确性。原创 2024-05-29 17:09:40 · 3025 阅读 · 22 评论 -
AI大模型探索之路-实战篇8:多轮对话与Function Calling技术应用
继前文深入探讨了Function Calling的操作流程并成功实验自动生成function函数之后,本文将进一步深化我们的研究,具体考察OpenAI的Function Calling技术在现实应用中的表现。此次研究的重点在于封装一个能够调用两轮response的函数,并在此基础上执行多轮对话的测试,从而全面评估该技术在实际应用中的效率和效果。通过精心设计的实验,我们将探索这项技术的潜力及其在智能数据分析平台上的应用前景。我们的目标是为平台的顺利实施构建一个稳固且高效的技术基础。原创 2024-05-27 07:30:00 · 2306 阅读 · 49 评论 -
AI大模型探索之路-实战篇9:探究Agent智能数据分析平台的架构与功能
随着数据量的激增和业务复杂性的提升,企业和组织对高效、精准的数据分析工具的需求日益增强。智能数据分析平台因此应运而生,它结合了最新的人工智能技术,尤其是大型语言模型,来解析用户的自然语言查询,并实现这些查询到数据库操作的转换。这种创新不仅提升了数据分析的效率和准确性,还极大地改善了用户体验。本文将详细介绍这一平台的架构设计、核心技术、以及实现方法。我们的目标是展示如何构建一个功能强大、用户友好且高度可靠的数据分析工具,它将支持交互式数据探索和智能分析,适用于各种业务场景。原创 2024-05-28 07:25:34 · 10499 阅读 · 169 评论 -
AI大模型探索之路-实战篇7:Function Calling技术实战:自动生成函数
继前文对Function Calling操作流程的详细回顾之后,本文将进一步探讨OpenAI的Function Calling技术在实际应用中的表现。通过利用大型模型的强大能力自动生成function函数,我们旨在提升代码的通用性与扩展性。这一深入分析的核心目标是为智能数据分析平台的顺利部署打下坚实的技术基础。原创 2024-05-26 07:00:00 · 3462 阅读 · 24 评论 -
AI大模型探索之路-实战篇6:掌握Function Calling的详细流程
继之前对DB-GPT和Open Interpreter技术的深入调研,本文将转向对OpenAI的Function Calling技术进行回顾与探讨。此次分析的目的旨在为即将到来的智能数据分析平台的顺利落地做好充分的技术储备。通过对Function Calling技术的深度剖析,我们希望建立更加坚实的理论基础,并在此基础上探索其在实际应用中的潜在价值和实施路径。这将不仅有助于我们更好地理解语言模型如何与程序代码交互,而且为未来的开发工作提供指导和灵感。原创 2024-05-25 17:47:29 · 2438 阅读 · 13 评论 -
AI大模型探索之路-实战篇5:探索Open Interpreter:开放代码解释器调研
在数字化时代的快速演进中,人工智能技术已成为引领变革的关键力量。其中,Open Interpreter这一新兴工具的出现,不仅令人耳目一新,更标志着一个全新编程模式的诞生。Open Interpreter的理念在于通过自然语言直接与计算机对话,让代码编写和程序运行变得更加亲民和高效。本文将深入探讨Open Interpreter的功能、应用场景以及对未来人机交互方式的潜在影响。随着技术的不断进步,我们已经从传统的编程语言逐步过渡到了更高级的编码手段。原创 2024-05-25 09:55:25 · 2706 阅读 · 26 评论 -
AI大模型探索之路-实战篇4:深入DB-GPT数据应用开发框架调研
在当今的人工智能时代,大模型技术的迅猛发展为各行各业带来了前所未有的变革。这些大模型,以其强大的语言理解和生成能力,正在逐步成为智能化应用的核心。然而,如何高效地利用这些大模型,构建出满足各种需求的应用,仍然是一个具有挑战性的问题。DB-GPT,作为一个开源的AI原生数据应用开发框架,应运而生,旨在简化大模型应用的开发过程,让构建智能化应用变得触手可及。本文将深入介绍DB-GPT的核心功能、关键特性,并通过实战操作,展示如何利用DB-GPT进行数据应用开发。DB-GPT是一个开源的AI原生数据应用开发框架。原创 2024-05-24 11:31:41 · 13463 阅读 · 160 评论 -
AI大模型探索之路-实战篇:智能化IT领域搜索引擎之github网站在线搜索
在上一篇文章中,我们完成了知乎网站数据的智能搜索流程的代码开发。本篇章将主要实现Github网站的在线智能搜索,为用户提供更全面、准确的搜索结果。原创 2024-06-17 07:30:00 · 5969 阅读 · 116 评论 -
AI大模型探索之路-实战篇:智能化IT领域搜索引擎之HuggingFace网站在线搜索
在前面篇章中,我们已成功实现了知乎与Github网站数据的智能搜索流程,并融入了代码开发之中。本章,我们将拓展边界,主要实现HuggingFace网站的在线智能搜索功能,致力于为用户提供更为全面且精准的搜索体验。原创 2024-06-18 14:22:51 · 1785 阅读 · 13 评论 -
AI大模型探索之路-实战篇:智能化IT领域搜索引擎之知乎网站数据获取(流程优化)
在上一篇文章中,我们对智能搜索中涉及的核心函数进行了精心的封装,为智能化IT领域搜索引擎的实现奠定了坚实基础。本文将致力于智能搜索流程中相关函数和工具的进一步优化与整理,旨在提升整个搜索引擎的效率和用户体验。原创 2024-06-16 11:13:18 · 1997 阅读 · 15 评论 -
AI大模型探索之路-实战篇:智能化IT领域搜索引擎之知乎网站数据获取(函数封装)
在上一篇章中,我们成功实现了知乎网站数据获取的基本流程,包括各类网页数据的解析等关键步骤。本篇章将进一步实现智能搜索的代码落地,对相关搜索、大模型调用的函数进行统一化封装,以提升代码的可维护性和可复用性。原创 2024-06-15 08:32:50 · 2759 阅读 · 22 评论 -
AI大模型探索之路-实战篇:智能化IT领域搜索引擎之知乎网站数据获取(初步实践)
在先前的文章中,我们完成了智能化IT领域搜索引擎的基础架构设计以及Google Search API的申请等前期准备工作。同时,我们还实践测试了GLM4的Function Calling能力,为后续的开发奠定了坚实的基础。本文将正式进入代码开发阶段,首先从知乎网站的数据搜索开始。原创 2024-06-14 09:03:46 · 5733 阅读 · 102 评论 -
AI大模型探索之路-实战篇:智能化IT领域搜索引擎之GLM-4大模型技术的实践探索
在先前的文章中,我们完成了智能化IT领域搜索引擎的基础架构设计以及Google Search API的申请等前期准备工作。本文将重点介绍如何利用GLM4的Function Calling能力进行实战体验,为我们的智能化IT领域搜索引擎的代码实现提供实践基础。原创 2024-06-13 14:03:17 · 2339 阅读 · 16 评论 -
AI大模型探索之路-实战篇:智能化IT领域搜索引擎的构建与初步实践
在信息技术飞速发展的当下,对于专业知识的检索需求正呈现出前所未有的增长态势。为了应对这一挑战,本文将深入探讨如何巧妙地结合大型语言模型的功能调用能力与谷歌搜索引擎API的强大功能,共同打造一个专门针对IT领域的智能在线搜索平台。这个平台不仅能够为用户提供更为精准、高效的搜索结果,还将引领信息技术检索的新潮流,为专业人士带来更加便捷、智能的搜索体验。原创 2024-06-12 10:06:11 · 5587 阅读 · 116 评论 -
AI大模型探索之路-资料篇:大模型开发相关地址信息收藏
本文的核心目的在于梳理和汇编大型模型开发领域内的相关资料与资源。通过集中整理这些信息,为后续大模型语言应用开发实践提供一个便捷的知识库和参考入口。原创 2024-04-23 10:17:05 · 1720 阅读 · 9 评论 -
AI大模型探索之路-实战篇3:基于私有模型GLM-企业级知识库开发实战
在当今信息时代,数据已经成为企业的核心资产之一。对于许多企业而言,信息安全和私密性是至关重要的,因此对外部服务提供的数据接口存在天然的警惕性。因此常规的基于在线大模型接口落地企业知识库项目,很难满足这些企业的安全需求。面对这样的挑战,只有私有化的部署方案才能满足企业需求;在实战篇2中《AI大模型探索之路-实战篇2:基于CVP架构-企业级知识库实战落地》,设计实现了基于CVP架构的企业知识库。本篇文章中将对企业知识库进行进一步的改造升级,以满足企业安全性方面的需求;原创 2024-04-22 08:22:25 · 4140 阅读 · 94 评论 -
AI大模型探索之路-应用篇17:GLM大模型-大数据自助查询平台架构实践
在众多大型企业中,数据资产庞大无比,因此它们纷纷构建了多种大数据平台。然而,关键在于如何高效地利用这些数据,例如,将数据有效地提供给产品经理或数据分析师以供他们进行设计和分析。在传统工作流程中,由于这些角色通常不是技术专家,他们往往无法直接使用和操控SQL,导致必须依赖技术人员来编写SQL查询并返回结果,然后才能由产品经理、数据分析师或其他相关人员进一步处理。原创 2024-04-20 07:43:10 · 5762 阅读 · 46 评论 -
AI大模型探索之路-应用篇16:GLM大模型-ChatGLM3 API开发实践
本章节旨在深入探索ChatGLM3所提供的丰富API接口,不仅覆盖GLM特有的代码风格API开发实践,还包括遵循OpenAI风格的API开发方式。我们将通过具体的操作步骤和实际案例,详细阐述如何利用核心工具Function Call来扩展模型功能,以及如何将这种强大的功能直接应用于实际应用中。随着内容的展开,读者将逐步掌握如何灵活使用ChatGLM3-6B的强大功能,开发出智能化的解决方案,满足不断变化的业务需求。原创 2024-04-19 07:36:56 · 2984 阅读 · 29 评论 -
AI大模型探索之路-应用篇15:GLM大模型-ChatGLM3-6B私有化本地部署
ChatGLM3-6B 是 OpenAI 推出的一款强大的自然语言处理模型,它在前两代模型的基础上进行了优化和改进,具有更高的性能和更广泛的应用场景。本文将从技术角度对 ChatGLM3-6B 进行详细介绍,包括其特点、资源评估、购买云服务器、git拉取GLM、pip安装依赖、运行测试以及本地部署安装等方面的内容。希望通过本文的介绍,能够帮助大家更好地理解和使用 ChatGLM3-6B 模型。原创 2024-04-18 08:01:45 · 6396 阅读 · 78 评论 -
AI大模型探索之路-应用篇14:认识国产开源大模型GLM
在人工智能的浩瀚宇宙中,开源大模型如同璀璨星辰,引领着技术创新与应用探索的方向。国际领域的OpenAI无疑闪耀着夺目的光芒,但国内厂商亦步亦趋,逐渐展露头角。今天,我们将聚焦于国内主流的大模型,探寻它们的技术脉络与应用潜力,并特别解析智谱AI研发的GLM大模型系列,见证中国在全球AI舞台上的坚实步伐。原创 2024-04-17 08:36:46 · 6289 阅读 · 62 评论 -
AI大模型探索之路-应用篇13:企业AI大模型选型指南
在打造企业AI大模型的路上,我们常常会遇到一系列的选型和概念挑战。例如,如何选择合适的模型,如何挑选GPU,以及什么是微调和监督微调等。本文旨在深入剖析这些常见问题,为大家提供一个全面的概览,帮助大家更好地理解和利用这些强大的工具。原创 2024-04-16 08:26:37 · 4036 阅读 · 48 评论 -
AI大模型探索之路-提升篇2:一文掌握AI大模型的核心-注意力机制
在人工智能的壮丽舞台上,AI大模型扮演着主角的角色,而注意力机制(Attention Mechanism)则如同这位主角的明亮双眼,为其提供了前所未有的洞察力。特别是在自然语言理解(NLU)的领域,注意力机制已成为推动技术革新的重要驱动力。本文旨在深入浅出地探讨注意力机制的核心原理、不同变体,以及它在提升AI大模型自然语言理解能力中的举足轻重之处。原创 2024-04-15 08:17:34 · 2674 阅读 · 40 评论 -
AI大模型探索之路-实战篇2:基于CVP架构-企业级知识库实战落地
在当今信息时代,企业的知识管理变得日益重要。随着人工智能技术的飞速发展,企业知识库的构建和维护已经从传统的文档存储和关键词检索演变为更加智能化、高效化的知识服务。CVP架构模式,作为一种结合了强大的语言理解和快速信息检索能力的先进框架,为企业提供了一个实现这一目标的有效途径。本文将深入探讨如何基于CVP(ChatGPT + VectorDB + Prompt)架构实现企业级知识库项目的落地,以及在实际过程中的应用特点和技术细节。原创 2024-04-14 11:33:30 · 3263 阅读 · 22 评论 -
AI大模型探索之路-应用篇12:AI大模型应用之向量数据库选型
随着人工智能的不断发展,机器学习这门技术也越来越重要,很多人都开启了学习机器学习,本文就介绍了机器学习的基础内容。引言随着人工智能技术的不断发展,AI大模型在各个领域的应用越来越广泛。而在处理大规模数据时,传统的关系型数据库已经难以满足需求。这时,一种名为“向量数据库”的新型数据库应运而生,它以高效、灵活的特点成为了AI大模型开发中的重要工具。原创 2024-04-14 08:31:12 · 2058 阅读 · 1 评论 -
AI大模型探索之路-应用篇11:AI大模型应用智能评估(Ragas)
随着人工智能技术的飞速发展,AI大模型(LLM)已经成为了推动技术创新和应用的关键因素。这些大模型在语言理解、图像识别、自然语言生成等领域展现出了惊人的能力。然而,随着模型规模的增大,它们对计算资源的消耗、环境适应性、模型稳定性、安全性和可解释性等方面也提出了新的挑战。因此,对AI大模型进行智能评估变得至关重要,以确保它们在实际应用中的稳定性、可靠性和有效性。本文将详细介绍Ragas框架,一个专为AI大模型设计的智能评估工具。原创 2024-04-13 09:09:43 · 4691 阅读 · 0 评论 -
AI大模型探索之路-应用篇10:Langchain框架-架构核心洞察
随着人工智能技术的不断进步,AI大模型已成为推动技术革新的重要力量。Langchain框架作为一种先进的应用开发架构,专门针对大型语言模型(LLM)的集成与应用设计,致力于打造一个高效、灵活且功能丰富的AI应用生态。通过将理论与实践相结合,Langchain旨在为开发者提供一个全方位的解决方案平台,以应对复杂的业务需求和挑战。原创 2024-04-12 13:01:04 · 1772 阅读 · 4 评论 -
AI大模型探索之路-应用篇9:Langchain框架LangSmith模块-AI模型监控神器
在经过前面多个篇章的学习后,我们已经了解到Langchain框架是一个为开发人员提供的全方位服务方案。从模型封装调用、提示词模板封装、Chain链式操作、检索增强,再到上线部署,它都提供了一站式解决方案。本章将重点讲解最后一个核心框架LangSmith,以补充完整最后的运维监控管理版块。原创 2024-04-12 07:51:18 · 1739 阅读 · 0 评论 -
AI大模型探索之路-应用篇8:Langchain框架LangServe模块-专注于AI模型的部署
随着AI大语言模型(LLM)的技术的不断演进,AI应用的开发和部署变得越来越复杂。在这样的背景下,LangServe应运而生——一个旨在简化AI服务部署和运维的框架。专为大模语言模型(LLM)的部署和管理而设计;本篇旨在讲解LangServe的功能特点和实践运用。原创 2024-04-11 12:08:03 · 1833 阅读 · 0 评论 -
AI大模型探索之路-应用篇7:Langchain框架Callbacks模块一策略定制与事件管理
Langchain框架除了前面章节介绍的各种模块组件之外,还提供一个回调模块,回调模块允许接到LLM应用程序的各个阶段,这对于日志记录、监视、流式处理和其他任务非常有用。原创 2024-04-10 18:19:04 · 1200 阅读 · 1 评论 -
AI大模型探索之路-应用篇6:Langchain框架Agent模块—智能化任务执行的核心
在人工智能的领域中,Langchain框架以其独特的Agent模块引起了广泛的关注。该模块作为智能化任务执行的核心,不仅体现了智能代理的强大能力,还展示了其在处理复杂任务中的高效性和精准度。原创 2024-04-10 08:32:46 · 2445 阅读 · 3 评论 -
AI大模型探索之路-应用篇5:Langchain框架Retrieval模块—高效的信息检索与增强
在人工智能的领域中,大模型的应用已经成为一种趋势。然而,大型语言模型(LLM)的应用程序往往需要特定于用户的数据,这些数据并不属于模型的训练集。为了实现这一目标,我们通常采用检索增强生成(Retrieval-augmented Generation,RAG)的方法。在此过程中,我们将从外部检索数据,然后在执行生成步骤时将其传递给 LLM。LangChain框架提供了一套完整的工具,以支持RAG应用程序的开发。原创 2024-04-09 18:40:22 · 2213 阅读 · 0 评论 -
AI大模型探索之路-应用篇4:Langchain框架Memory模块—增强模型记忆与知识保留
在AI大模型应用开发中,Langchain框架的Memory模块扮演着至关重要的角色。作为模型记忆增强与知识保留的关键,它通过一系列高效的机制来管理和存储历史对话内容,为未来的查询和分析提供了便利。原创 2024-04-09 12:01:13 · 1839 阅读 · 0 评论 -
AI大模型探索之路-应用篇3:Langchain框架Chain模块—集成化策略与实践
Langchain框架的Chain模块应运而生,旨在简化复杂AI任务流程管理,提高模块化组件复用性,降低维护难度。随着AI技术的不断发展,处理语言模型所需的组件变得越来越复杂,开发者面临着如何有效地组织和管理这些组件的挑战。为了解决这个问题,Langchain框架引入了Chain模块,它通过模块化的设计思想,将多个功能组件组合成有序的执行流程,使得每一步骤都可以独立开发和测试,同时也便于整个流程的跟踪和调试。这种设计不仅提高了代码的复用性,还使得维护和扩展变得更加容易。原创 2024-04-08 23:37:18 · 1320 阅读 · 0 评论 -
AI大模型探索之路-应用篇2:Langchain框架ModelIO模块—数据交互的秘密武器
随着人工智能技术的不断进步,大模型的应用场景越来越广泛。LangChain框架作为一个创新的解决方案,专为处理大型语言模型的输入输出而设计。其中,Model IO(输入输出)模块扮演着至关重要的角色,负责构建和管理数据交互的通道。本文将深入剖析ModelIO模块的工作原理、功能特性,以及如何通过该模块提升数据处理效率,进而加速AI大模型应用的开发。原创 2024-04-07 22:28:31 · 1937 阅读 · 0 评论