sklearn中的Pipeline

本文介绍了如何在sklearn中利用Pipeline进行数据预处理和模型选择的流水线操作,简化建模过程。通过Pipeline可以将fit_transform和transform等步骤整合,方便管理复杂的数据处理流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一般来说,使用sklearn建模时步骤如下:


0、start
1、分隔训练集和测试集(和验证集)
2、数据预处理
3、特征选择
4、模型选择
5、使用GridSearchCV进行参数寻优
6、end


其中,数据预处理部分可能需要先fit_transform再transform,相对较为繁琐,此时可以通过Pipeline(管道)进行流水线处理。
代码讲解如下:

#导入需要的包
In [296]: import numpy as np
In [297]: from sklearn.datasets import load_digits
In [299]: from sklearn.svm import SVC
In [300]: from sklearn.preprocessing import MinMaxScaler
In [301]: from sklearn.pipeline import Pipeline
In [304]: from sklearn.model_selection import train_test_split

#划分训练集测试集
In [307]: x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3)

#数据预处理
In [308]: scaler = MinMaxScaler()
#模型选择
In [309]: model = SVC(probability=True)

#Pipeline通过一个由2个参数的元组组成的列表构成,其中元组中第一个参数为自定义name,第二个为处理对象
#需要按照流水线顺序放入
In [310]: pipe = Pipeline([('norm', scaler), ('clf', model)])

#通过上一步自定义的name+'__'(双下划线)+ 处理对象的参数进行参数设置(调整)
In [31
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值