欺诈文本分类检测(十六):支持分类原因评测改造

1. 引言

经过前文对数据的校正与增强后,我们的预期生成结果中不再仅仅是分类标签,还多了欺诈者和分类原因。这样之前模型评测批量评测两篇文章所封装的evaluate.py脚本就不再满足,需要对脚本进行改造,以支持新输出内容的评测。

新的预期结果中共包含三个信息,由于三个信息的特点不同,需要为每个字段制定不同的评测方式:

  • is_fraud: 属于二分类,继续采用精确率和召回率作为评测指标。
  • fraud_speaker: 属于多分类,多分类没有混淆矩阵,可以使用sklearn包提供的accuracy_score计算准确率作为评测指标。
  • reason: 属于分文生成,由于没有准确值,可以通过rouge_score计算文本串的相似度作为评测指标。

2. rouge指标调研

ROUGE(Recall-Oriented Understudy for Gisting Evaluation)指标是用于评估文本摘要质量的一种常用指标。它通过比较生成的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉下心来学鲁班

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值