1. 引言
在上上一节带你构建MiniGPT中详细演示了文本生成的过程,整个过程如下图所示:
上图描绘了使用 GPT 模型进行文本生成的三步。
- 首先,分词器将输入文本转换为一系列的 token ID。
- 其次,模型接收这些 token ID,并生成相应的 logit,这些 logit 是向量,代表词汇表中每个令牌的概率分布。
- 最后,这些 logit 被转换回 token ID,分词器将其解码为人类可读的文本,从而完成从文本输入到文本输出的循环。
同时,文章中也提到,模型现在还无法生成连贯的文本,因为它还未经过训练。本节将来讨论如何对模型进行预训练,从而让模型能够生成连贯的文本。
2. 文本生成质量评估
为了定义何为连贯的文本,我们需要实现一种数值化的方法来评估生成的内容。这种方法将使我们能够在整个训练过程中监控并提升模型的性能。
接下来的部分将介绍我们如何为生成的文本计算损失指标(loss metric)。这个损失会作为训