GPT从零构建:预训练模型之从零起步

1. 引言

在上上一节带你构建MiniGPT中详细演示了文本生成的过程,整个过程如下图所示:

在这里插入图片描述

上图描绘了使用 GPT 模型进行文本生成的三步。

  • 首先,分词器将输入文本转换为一系列的 token ID。
  • 其次,模型接收这些 token ID,并生成相应的 logit,这些 logit 是向量,代表词汇表中每个令牌的概率分布。
  • 最后,这些 logit 被转换回 token ID,分词器将其解码为人类可读的文本,从而完成从文本输入到文本输出的循环。

同时,文章中也提到,模型现在还无法生成连贯的文本,因为它还未经过训练。本节将来讨论如何对模型进行预训练,从而让模型能够生成连贯的文本。

2. 文本生成质量评估

为了定义何为连贯的文本,我们需要实现一种数值化的方法来评估生成的内容。这种方法将使我们能够在整个训练过程中监控并提升模型的性能。

接下来的部分将介绍我们如何为生成的文本计算损失指标(loss metric。这个损失会作为训

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

沉下心来学鲁班

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值