sparksql优化的奇技淫巧(一次惊掉下巴的优化)

本文通过一个实际案例展示了如何通过添加非确定性辅助列来避免Spark的 CollapseProject 优化器导致的性能问题。在处理大量复杂数据时,这种优化技巧使查询速度提升了显著的效果。通过对SparkSQL的深入理解,作者找到了不使用UDTF而仅依赖UDF的解决方案,减少了计算次数,从而大幅提高了任务执行效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

先给看效果:

刚重跑的,知道能加快,但没想到能加快这么多

先说下数据量吧,每天20亿+

这次的优化灵感,来自于牛逼的群友们

源于群里一个同学的疑惑,看图:

只能说,以后大家看到一个看似没用的条件的时候,千万不要随便删除,这个条件很有可能起到了优化的大作用。

由于群里的同学公司用的spark版本比较早,我们知道原因就好,暂且不细去追究。

可是,这个思路提醒了我,我们有个任务,也可以用这个方法来优化,并且走的是另外一个原理。

之前有写一篇

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小萝卜算子

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值