BZOJ:3894: 文理分科(网络流)

该博客介绍了一道经典的网络流问题——BZOJ 3894,即如何通过网络流模型解决文理分科的选择,以使权值最大化。博主分析了将问题转化为最小割问题的方法,通过连接节点构建模型,确保最终文科和理科的划分,并提供了解决代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

每个同学都只能选择文科或者理科一种,选择文科会获得一个权值,理科也有,如果一个人以及周围四个人都选择了一个学科,那么又会获得一个权值。
将权值最大化。

分析

很经典的网络流题目,用最小割。
首先我们的模型想法是把最终和S集联通的弄成文集,T集联通的弄成理集,然后用最小割割掉,为了使用最小割,我们采取首先加入所有权值,然后看根据选择减少了哪些权值。

连边的方式就是:
对于一个结点,s->i连文科,i->t连理科。
然后弄一个全部文科的结点i’,s->i’流量是权值,i’->对应的五个点,流量inf。
理科的话自己推一下就出来了。

这样做的结果就是,一旦一个结点选择理科,那么文科边,以及它所有对应的全部选择文科的那种结点,全部会被割掉,使得获取正确答案。

代码

#include<cmath>
#include<queue>
#include<cctype>
#include<cstdio>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=10000*3+105,maxm=maxn*5,inf=1e9;
int np,first[maxn];
struct edge{
    int from,to,next,cap,flow;
}E[maxm<<1];
void add(int u,int v,int c)
{
    E[++np]=(edge){u,v,first[u],c,0};
    first[u]=np;
    E[++np]=(edge){v,u,first[v],0,0};
    first[v]=np;
}
int dx[]={0,1,-1,0,0};
int dy[]={0,0,0,1,-1};
int n,m,s,t,nm,sum;
#define getId(x,y) ((x)-1)*m+(y)
void Init()
{
    int a,id,id1,ni,nj;
    np=-1;
    memset(first,-1,sizeof(first));
    scanf("%d%d",&n,&m);
    nm=n*m,s=3*nm+1,t=s+1;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            scanf("%d",&a);
            sum+=a;
            id=getId(i,j);
            add(s,id,a);
        }
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            scanf("%d",&a);
            sum+=a;
            id=getId(i,j);
            add(id,t,a);
        }
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            scanf("%d",&a);
            sum+=a;
            id=getId(i,j)+nm;
            add(s,id,a);
            for(int k=0;k<5;k++)
            {
                ni=i+dx[k],nj=j+dy[k];
                if(ni<1 || nj<1 || ni>n || nj>m)continue;
                id1=getId(ni,nj);
                add(id,id1,inf);
            }
        }
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=m;j++)
        {
            scanf("%d",&a);
            sum+=a;
            id=getId(i,j)+2*nm;
            add(id,t,a);
            for(int k=0;k<5;k++)
            {
                ni=i+dx[k],nj=j+dy[k];
                if(ni<1 || nj<1 || ni>n || nj>m)continue;
                id1=getId(ni,nj);
                add(id1,id,inf);
            }
        }
    }
}
int dist[maxn],gap[maxn];
int SAP(int i,int lim)
{
    if(i==t)return lim;
    int flow=0,tmp;
    for(int p=first[i];p!=-1;p=E[p].next)if(E[p].cap-E[p].flow)
    {
        int j=E[p].to;
        if(dist[i]==dist[j]+1)
        {
            tmp=SAP(j,min(lim-flow,E[p].cap-E[p].flow));
            E[p].flow+=tmp;
            E[p^1].flow-=tmp;
            flow+=tmp;
            if(dist[s]>=t || lim==flow)return flow;
        }
    }
    if(flow==0)
    {
        if(--gap[dist[i]]==0)dist[s]=t;
        gap[++dist[i]]++;
    }
    return flow;
}
void maxFlow()
{
    memset(gap,0,sizeof(gap));
    memset(dist,0,sizeof(dist));
    gap[0]=t;
    int ret=0;
    while(dist[s]<t)ret+=SAP(s,inf);
    printf("%d\n",sum-ret);
}
int main()
{
    //freopen("in.txt","r",stdin);
    Init();
    maxFlow();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值