BZOJ 2120: 数颜色(带修莫队)

这篇博客介绍了如何使用带修莫队算法解决数颜色问题,包括查询区间不同颜色的个数和修改操作。算法虽然时间复杂度看似较高,但实际运行速度较快,且空间效率高。文章提到了查询和修改操作的关键排序方式,以及实现中的细节和技巧,如记录节点信息、修改操作的历史状态等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目

给定一个序列要求查询一个区间不同颜色的个数,支持修改操作。

带修莫队

记一个看起来很SB时间复杂度O(n5/3)O(n5/3)连暴力都是O(n2)O(n2)但是有些时候可以代替树套树而且空间非常小而且超好些的高科技算法带修莫队:

  • 修改按时间排序
  • 查询按左端点的块为第一关键字,右端点的块位第二关键字,时间为第三关键字,每次查询暴力修改、转移。

时间复杂度就懒得分析了。

说几个细节吧

  • 对于询问结点要记录l,r,id,tt(之前的修该次数)
  • 对于修该操作要记录:sub,v,pastv(以前的情况,用于还原)
  • 然后还是l=1,r=0的技巧是要去用的
  • 块的大小理论n^3/2,实际上可以自己多试一试,反正好对拍。
  • 这个算法实际上还是跑得贼快的,暴力6S直接T这个只跑了700ms左右。

代码

#include<bits/stdc++.h>
using namespace std;
const int maxn=1e4+105,maxm=1e6+105,TIM=464;
int n,m;
int belong[maxn],vis[maxm],a[maxn],b[maxn];
char s[5];
void Build()
{
    int L=0,R=0,num=0;
    for(num=1;num*TIM<n;num++)
    {
        L=R+1;R=L+TIM-1;
        for(int j=L;j<=R;j++)belong[j]=num;
    }
    L=R+1;R=n;
    for(int j=L;j<=R;j++)belong[j]=num;
}
int m1,m2;
int ans[maxn];
struct data{
    int l,r,id,tt;
    friend bool operator<(data a,data b)
    {
        if(belong[a.l]!=belong[b.l])return belong[a.l]<belong[b.l];
        if(belong[a.r]!=belong[b.r])return belong[a.r]<belong[b.r];
        return a.id<b.id;
    }
}d[maxn];
int P[maxn],Col[maxn],Pa[maxn];
void Init()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)scanf("%d",&a[i]),b[i]=a[i];

    while(m--)
    {
        scanf("%s",s);
        if(s[0]=='Q')
        {
            m1++;
            d[m1].id=m1;
            d[m1].tt=m2;
            scanf("%d%d",&d[m1].l,&d[m1].r);
        }
        else
        {
            m2++;
            scanf("%d%d",&P[m2],&Col[m2]);
            Pa[m2]=b[P[m2]];
            b[P[m2]]=Col[m2];;
        }
    }

    Build();
    sort(d+1,d+m1+1);
}
int l=1,r=0,t,cnt;
void add(int x)
{
    vis[a[x]]++;
    if(vis[a[x]]==1)cnt++;
}
void del(int x)
{
    vis[a[x]]--;
    if(vis[a[x]]==0)cnt--;
}
void modify(int sub,int v)
{
    if(l<=sub && sub<=r)del(sub),a[sub]=v,add(sub);
    else a[sub]=v;
}
void modui()
{
    for(int i=1;i<=m1;i++)
    {
        while(r<d[i].r)add(++r);
        while(l>d[i].l)add(--l);
        while(r>d[i].r)del(r--);
        while(l<d[i].l)del(l++);
        while(t<d[i].tt)t++,modify(P[t],Col[t]);
        while(t>d[i].tt)modify(P[t],Pa[t]),t--;
        ans[d[i].id]=cnt;
    }
    for(int i=1;i<=m1;i++)
        printf("%d\n",ans[i]);
}
int main()
{
    //freopen("in.txt","r",stdin);
    Init();
    modui();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值