题目
给定一个序列要求查询一个区间不同颜色的个数,支持修改操作。
带修莫队
记一个看起来很SB时间复杂度O(n5/3)O(n5/3)连暴力都是O(n2)O(n2)但是有些时候可以代替树套树而且空间非常小而且超好些的高科技算法带修莫队:
- 修改按时间排序
- 查询按左端点的块为第一关键字,右端点的块位第二关键字,时间为第三关键字,每次查询暴力修改、转移。
时间复杂度就懒得分析了。
说几个细节吧
- 对于询问结点要记录l,r,id,tt(之前的修该次数)
- 对于修该操作要记录:sub,v,pastv(以前的情况,用于还原)
- 然后还是l=1,r=0的技巧是要去用的
- 块的大小理论n^3/2,实际上可以自己多试一试,反正好对拍。
- 这个算法实际上还是跑得贼快的,暴力6S直接T这个只跑了700ms左右。
代码
#include<bits/stdc++.h>
using namespace std;
const int maxn=1e4+105,maxm=1e6+105,TIM=464;
int n,m;
int belong[maxn],vis[maxm],a[maxn],b[maxn];
char s[5];
void Build()
{
int L=0,R=0,num=0;
for(num=1;num*TIM<n;num++)
{
L=R+1;R=L+TIM-1;
for(int j=L;j<=R;j++)belong[j]=num;
}
L=R+1;R=n;
for(int j=L;j<=R;j++)belong[j]=num;
}
int m1,m2;
int ans[maxn];
struct data{
int l,r,id,tt;
friend bool operator<(data a,data b)
{
if(belong[a.l]!=belong[b.l])return belong[a.l]<belong[b.l];
if(belong[a.r]!=belong[b.r])return belong[a.r]<belong[b.r];
return a.id<b.id;
}
}d[maxn];
int P[maxn],Col[maxn],Pa[maxn];
void Init()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)scanf("%d",&a[i]),b[i]=a[i];
while(m--)
{
scanf("%s",s);
if(s[0]=='Q')
{
m1++;
d[m1].id=m1;
d[m1].tt=m2;
scanf("%d%d",&d[m1].l,&d[m1].r);
}
else
{
m2++;
scanf("%d%d",&P[m2],&Col[m2]);
Pa[m2]=b[P[m2]];
b[P[m2]]=Col[m2];;
}
}
Build();
sort(d+1,d+m1+1);
}
int l=1,r=0,t,cnt;
void add(int x)
{
vis[a[x]]++;
if(vis[a[x]]==1)cnt++;
}
void del(int x)
{
vis[a[x]]--;
if(vis[a[x]]==0)cnt--;
}
void modify(int sub,int v)
{
if(l<=sub && sub<=r)del(sub),a[sub]=v,add(sub);
else a[sub]=v;
}
void modui()
{
for(int i=1;i<=m1;i++)
{
while(r<d[i].r)add(++r);
while(l>d[i].l)add(--l);
while(r>d[i].r)del(r--);
while(l<d[i].l)del(l++);
while(t<d[i].tt)t++,modify(P[t],Col[t]);
while(t>d[i].tt)modify(P[t],Pa[t]),t--;
ans[d[i].id]=cnt;
}
for(int i=1;i<=m1;i++)
printf("%d\n",ans[i]);
}
int main()
{
//freopen("in.txt","r",stdin);
Init();
modui();
return 0;
}