### C++ 高精度运算实现方法
高精度运算通常用于处理超出基本数据类型范围的大整数运算,例如大数加减乘除、阶乘、幂运算等。以下是几种常见的高精度运算实现方法。
#### 高精度整数的存储方式
高精度整数通常使用数组或字符串存储,每一位对应数组的一个元素。为了方便计算,可以采用逆序存储(低位在前)或顺序存储(高位在前)。
```cpp
#include <vector>
#include <string>
using namespace std;
// 逆序存储(低位在前)
vector<int> num1 = {3, 2, 1}; // 表示 123
vector<int> num2 = {6, 5, 4}; // 表示 456
```
#### 高精度加法
高精度加法的核心是模拟手工加法,逐位相加并处理进位。
```cpp
vector<int> add(vector<int>& a, vector<int>& b) {
vector<int> c;
int carry = 0;
for (int i = 0; i < a.size() || i < b.size(); ++i) {
if (i < a.size()) carry += a[i];
if (i < b.size()) carry += b[i];
c.push_back(carry % 10);
carry /= 10;
}
if (carry) c.push_back(carry);
return c;
}
```
#### 高精度减法
高精度减法需要确保被减数大于减数,逐位相减并处理借位。
```cpp
vector<int> sub(vector<int>& a, vector<int>& b) {
vector<int> c;
int carry = 0;
for (int i = 0; i < a.size(); ++i) {
carry = a[i] - carry;
if (i < b.size()) carry -= b[i];
c.push_back((carry + 10) % 10);
if (carry < 0) carry = 1;
else carry = 0;
}
while (c.size() > 1 && c.back() == 0) c.pop_back();
return c;
}
```
#### 高精度乘法
高精度乘法分为高精度乘以低精度和高精度乘以高精度两种情况。
**高精度乘以低精度:**
```cpp
vector<int> mul(vector<int>& a, int b) {
vector<int> c;
int carry = 0;
for (int i = 0; i < a.size() || carry; ++i) {
if (i < a.size()) carry += a[i] * b;
c.push_back(carry % 10);
carry /= 10;
}
return c;
}
```
**高精度乘以高精度:**
```cpp
vector<int> mul(vector<int>& a, vector<int>& b) {
vector<int> c(a.size() + b.size(), 0);
for (int i = 0; i < a.size(); ++i) {
for (int j = 0; j < b.size(); ++j) {
c[i + j] += a[i] * b[j];
c[i + j + 1] += c[i + j] / 10;
c[i + j] %= 10;
}
}
while (c.size() > 1 && c.back() == 0) c.pop_back();
return c;
}
```
#### 高精度除法
高精度除法分为高精度除以低精度和高精度除以高精度两种情况。
**高精度除以低精度:**
```cpp
vector<int> div(vector<int>& a, int b, int& r) {
vector<int> c;
r = 0;
for (int i = a.size() - 1; i >= 0; --i) {
r = r * 10 + a[i];
c.push_back(r / b);
r %= b;
}
reverse(c.begin(), c.end());
while (c.size() > 1 && c.back() == 0) c.pop_back();
return c;
}
```
#### 高精度阶乘计算
高精度阶乘通过循环乘法实现。
```cpp
vector<int> factorial(int n) {
vector<int> res = {1};
for (int i = 2; i <= n; ++i) {
int carry = 0;
for (int j = 0; j < res.size(); ++j) {
carry += res[j] * i;
res[j] = carry % 10;
carry /= 10;
}
while (carry) {
res.push_back(carry % 10);
carry /= 10;
}
}
return res;
}
```
#### 高精度幂运算
高精度幂运算通过快速幂算法结合高精度乘法实现。
```cpp
vector<int> pow(vector<int>& a, int b) {
vector<int> res = {1};
while (b > 0) {
if (b & 1) res = mul(res, a);
a = mul(a, a);
b >>= 1;
}
return res;
}
```
#### 高精度输入输出
为了方便输入输出,可以使用字符串与高精度数组的转换。
```cpp
vector<int> strToVec(string s) {
vector<int> res;
for (int i = s.size() - 1; i >= 0; --i) {
res.push_back(s[i] - '0');
}
return res;
}
string vecToStr(vector<int>& a) {
string res;
for (int i = a.size() - 1; i >= 0; --i) {
res += to_string(a[i]);
}
return res;
}
```
#### 示例代码:计算大数阶乘
```cpp
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;
vector<int> factorial(int n) {
vector<int> res = {1};
for (int i = 2; i <= n; ++i) {
int carry = 0;
for (int j = 0; j < res.size(); ++j) {
carry += res[j] * i;
res[j] = carry % 10;
carry /= 10;
}
while (carry) {
res.push_back(carry % 10);
carry /= 10;
}
}
return res;
}
int main() {
int n = 50;
vector<int> res = factorial(n);
for (int i = res.size() - 1; i >= 0; --i) {
cout << res[i];
}
return 0;
}
```
通过以上方法,可以实现C++中的高精度运算,满足大整数计算的需求。