C++ 高精度教程

### C++ 高精度运算实现方法

高精度运算通常用于处理超出基本数据类型范围的大整数运算,例如大数加减乘除、阶乘、幂运算等。以下是几种常见的高精度运算实现方法。

#### 高精度整数的存储方式

高精度整数通常使用数组或字符串存储,每一位对应数组的一个元素。为了方便计算,可以采用逆序存储(低位在前)或顺序存储(高位在前)。

```cpp
#include <vector>
#include <string>
using namespace std;

// 逆序存储(低位在前)
vector<int> num1 = {3, 2, 1}; // 表示 123
vector<int> num2 = {6, 5, 4}; // 表示 456
```

#### 高精度加法

高精度加法的核心是模拟手工加法,逐位相加并处理进位。

```cpp
vector<int> add(vector<int>& a, vector<int>& b) {
    vector<int> c;
    int carry = 0;
    for (int i = 0; i < a.size() || i < b.size(); ++i) {
        if (i < a.size()) carry += a[i];
        if (i < b.size()) carry += b[i];
        c.push_back(carry % 10);
        carry /= 10;
    }
    if (carry) c.push_back(carry);
    return c;
}
```

#### 高精度减法

高精度减法需要确保被减数大于减数,逐位相减并处理借位。

```cpp
vector<int> sub(vector<int>& a, vector<int>& b) {
    vector<int> c;
    int carry = 0;
    for (int i = 0; i < a.size(); ++i) {
        carry = a[i] - carry;
        if (i < b.size()) carry -= b[i];
        c.push_back((carry + 10) % 10);
        if (carry < 0) carry = 1;
        else carry = 0;
    }
    while (c.size() > 1 && c.back() == 0) c.pop_back();
    return c;
}
```

#### 高精度乘法

高精度乘法分为高精度乘以低精度和高精度乘以高精度两种情况。

**高精度乘以低精度:**

```cpp
vector<int> mul(vector<int>& a, int b) {
    vector<int> c;
    int carry = 0;
    for (int i = 0; i < a.size() || carry; ++i) {
        if (i < a.size()) carry += a[i] * b;
        c.push_back(carry % 10);
        carry /= 10;
    }
    return c;
}
```

**高精度乘以高精度:**

```cpp
vector<int> mul(vector<int>& a, vector<int>& b) {
    vector<int> c(a.size() + b.size(), 0);
    for (int i = 0; i < a.size(); ++i) {
        for (int j = 0; j < b.size(); ++j) {
            c[i + j] += a[i] * b[j];
            c[i + j + 1] += c[i + j] / 10;
            c[i + j] %= 10;
        }
    }
    while (c.size() > 1 && c.back() == 0) c.pop_back();
    return c;
}
```

#### 高精度除法

高精度除法分为高精度除以低精度和高精度除以高精度两种情况。

**高精度除以低精度:**

```cpp
vector<int> div(vector<int>& a, int b, int& r) {
    vector<int> c;
    r = 0;
    for (int i = a.size() - 1; i >= 0; --i) {
        r = r * 10 + a[i];
        c.push_back(r / b);
        r %= b;
    }
    reverse(c.begin(), c.end());
    while (c.size() > 1 && c.back() == 0) c.pop_back();
    return c;
}
```

#### 高精度阶乘计算

高精度阶乘通过循环乘法实现。

```cpp
vector<int> factorial(int n) {
    vector<int> res = {1};
    for (int i = 2; i <= n; ++i) {
        int carry = 0;
        for (int j = 0; j < res.size(); ++j) {
            carry += res[j] * i;
            res[j] = carry % 10;
            carry /= 10;
        }
        while (carry) {
            res.push_back(carry % 10);
            carry /= 10;
        }
    }
    return res;
}
```

#### 高精度幂运算

高精度幂运算通过快速幂算法结合高精度乘法实现。

```cpp
vector<int> pow(vector<int>& a, int b) {
    vector<int> res = {1};
    while (b > 0) {
        if (b & 1) res = mul(res, a);
        a = mul(a, a);
        b >>= 1;
    }
    return res;
}
```

#### 高精度输入输出

为了方便输入输出,可以使用字符串与高精度数组的转换。

```cpp
vector<int> strToVec(string s) {
    vector<int> res;
    for (int i = s.size() - 1; i >= 0; --i) {
        res.push_back(s[i] - '0');
    }
    return res;
}

string vecToStr(vector<int>& a) {
    string res;
    for (int i = a.size() - 1; i >= 0; --i) {
        res += to_string(a[i]);
    }
    return res;
}
```

#### 示例代码:计算大数阶乘

```cpp
#include <iostream>
#include <vector>
#include <algorithm>
using namespace std;

vector<int> factorial(int n) {
    vector<int> res = {1};
    for (int i = 2; i <= n; ++i) {
        int carry = 0;
        for (int j = 0; j < res.size(); ++j) {
            carry += res[j] * i;
            res[j] = carry % 10;
            carry /= 10;
        }
        while (carry) {
            res.push_back(carry % 10);
            carry /= 10;
        }
    }
    return res;
}

int main() {
    int n = 50;
    vector<int> res = factorial(n);
    for (int i = res.size() - 1; i >= 0; --i) {
        cout << res[i];
    }
    return 0;
}
```

通过以上方法,可以实现C++中的高精度运算,满足大整数计算的需求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值