【冰糖Python】PyTorch:损失函数 BCELoss() BCEWithLogitsLoss() 和 CrossEntropyLoss()

PyTorch中提供了很多种损失函数,常用于分类的是 torch.nn.BCELoss()、torch.nn.BCEWithLogitsLoss() 和 torch.nn.CrossEntropyLoss()

其中,torch.nn.BCELoss()、torch.nn.BCEWithLogitsLoss() 用于二分类问题, torch.nn.CrossEntropyLoss() 既可用于二分类又可用于多分类

以下对这三项进行辨析(PyTorch 1.8.0)

1、torch.torch.nn.BCELoss()

此损失函数衡量输出与目标之间的二分类交叉熵

torch.torch.nn.BCELoss(weight=None, reduction='mean')

weight:默认 None,用于计算损失的手动尺度化的权重,张量

reduction:默认 'mean',指定应用于输出的缩减方式,另可选 'none','sum';'none':不应用缩减;'mean':输出的和除以输出内元素数;'sum':输出加和

输入:input -- 形状为\left ( N,* \right )N为样本数量,*为任意其他维度

输入:target -- 形状\left ( N,* \right ),形状同input

输出:output -- 标量(reduction若为none,则形状同input)

未缩减的 loss 可以表示为:

l\left ( x,y \right )=L=\left \{ l_{1},...,l_{N} \right \}^{T},\; l_{n}=-w_{n}\left [ y_{n}\cdot logx_{n} \right+\left ( 1-y_{n} \right )\cdot log\left ( 1-x_{n} \right ) ]

其中N是 batch 的大小;

如果参数 reduction 不是 'none',则有:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

冰糖不在家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值