割点、割边、双连通分支

本文深入探讨图论中的重要概念——割点、割边和双连通分支,揭示它们在图的连通性和结构分析中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


一、割点、割边、双连通分支概念


挂接点(Articulation point)就是割点(Cut Vertex)
桥(Bridge)就是割边(Cut Edge)

割点:v为割点,则去掉v后,图的连通分支增加。
割边:v为割边,则去掉v后,图的连通分支增加。
割点形式化的定义:a是割点当且仅当存在两个点u,v使得u到v的每条路径都会经过a。(去掉a后,u到v没有路径)
边双连通分支:在连通分支中去掉一条边,连通分支仍连通。
点双连通分支:在连通分支中去掉一个点,连通分支仍连通。
我们这里说的是点双连通分支,因为由定义“任何两条边都在一个公共简单回路,且在一个双连通分支中没有割点,因此是点双连通分支。”。

割点应用场景:
给定一个计算机网络,如果有一个计算机v坏掉了,那么是否任何两个计算机都能够仍然连通?
遇到上述问题,是否能够转化成图论问题呢?
其实这个问题就是看坏掉的计算机是否是割点,如果是割点,则一定存在两个计算机u、v,u和v不连通。

双连通图定义:不存在割点。
双连通分支定义:他是极大双连通子图,就是如果G是双连通分支,则不存在G',G是G‘的子图,且G’也是双连通分支。


二、一些命题的证明
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值