CF401D(Roman and Numbers)状压DP

本文探讨了在给定条件下,通过重新排列数字得到不同数并判断其能否被特定数整除的问题。详细介绍了正解思路及代码实现,强调了时间与空间复杂度的计算,避免过度乐观估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题意:给一个数n和m(n (1 ≤ n < 1018)   m (1 ≤ m ≤ 100).)问n的各位数字重新组合(非0开头)有多少种不同的数能被m整除。当时想到了正解,但是没仔细算long long ans[1<<18][100]以为会超限,当时问适牛跟着用了一个map来映射状态,结果比赛时样例过了,最后81组数据测试时第80组TLE。其实现在想想也许搞个hash就不会TLE了。 long long ans[1<<18][100]大概只有200M,题目给了400M,想想如果N给10^20就不行了,应该是故意卡的,还有时间复杂度也是刚刚卡过,以后每看题一定要先严格计算好时间和空间,不能乱YY。

还是回忆下正解吧:

ans[j][k]的j转化为二进制表示n的每个位置是否被用到,k是指模m等于k的数量。转移也是暴力转的,最坏复杂度是:(1<<18)*18*m=470M,题目给了4s,是可以过的。给的n 18位和m<=100貌似都是为了让过这个复杂度。

代码:

/****************************************************
* author:xiefubao
*******************************************************/
#pragma comment(linker, "/STACK:102400000,102400000")
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <vector>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <string.h>

using namespace std;

#define eps 1e-8

char s[25];
int m;
long long ans[1<<18][105];
long long fac(int n)
{
   long long out=1;
    for(int i=1;i<=n;i++)
        out*=i;
    return out;
}
int tool[10];
int main()
{
   scanf("%s%d",s,&m);
   int len=strlen(s);
   sort(s,s+len);
   for(int i=0;i<len;i++)
   {
       if(s[i]-'0')
       ans[1<<i][(s[i]-'0')%m]=1;
       tool[s[i]-'0']++;
   }
   for(int i=1;i<(1<<len)-1;i++)
   {
       for(int k=0;k<m;k++)
       {
       for(int j=0;j<len;j++)
       {
           if(i&(1<<j))continue;
           ans[i+(1<<j)][(k*10+(s[j]-'0'))%m]+=ans[i][k];
       }
       }
   }
   long long out=ans[(1<<len)-1][0];
   for(int i=0;i<=9;i++)
    out/=fac(tool[i]);
   cout<<out<<'\n';
   return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值