题意:给一个数n和m(n (1 ≤ n < 1018) m (1 ≤ m ≤ 100).)问n的各位数字重新组合(非0开头)有多少种不同的数能被m整除。当时想到了正解,但是没仔细算long long ans[1<<18][100]以为会超限,当时问适牛跟着用了一个map来映射状态,结果比赛时样例过了,最后81组数据测试时第80组TLE。其实现在想想也许搞个hash就不会TLE了。 long long ans[1<<18][100]大概只有200M,题目给了400M,想想如果N给10^20就不行了,应该是故意卡的,还有时间复杂度也是刚刚卡过,以后每看题一定要先严格计算好时间和空间,不能乱YY。
还是回忆下正解吧:
ans[j][k]的j转化为二进制表示n的每个位置是否被用到,k是指模m等于k的数量。转移也是暴力转的,最坏复杂度是:(1<<18)*18*m=470M,题目给了4s,是可以过的。给的n 18位和m<=100貌似都是为了让过这个复杂度。
代码:
/****************************************************
* author:xiefubao
*******************************************************/
#pragma comment(linker, "/STACK:102400000,102400000")
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <queue>
#include <vector>
#include <algorithm>
#include <cmath>
#include <map>
#include <set>
#include <stack>
#include <string.h>
using namespace std;
#define eps 1e-8
char s[25];
int m;
long long ans[1<<18][105];
long long fac(int n)
{
long long out=1;
for(int i=1;i<=n;i++)
out*=i;
return out;
}
int tool[10];
int main()
{
scanf("%s%d",s,&m);
int len=strlen(s);
sort(s,s+len);
for(int i=0;i<len;i++)
{
if(s[i]-'0')
ans[1<<i][(s[i]-'0')%m]=1;
tool[s[i]-'0']++;
}
for(int i=1;i<(1<<len)-1;i++)
{
for(int k=0;k<m;k++)
{
for(int j=0;j<len;j++)
{
if(i&(1<<j))continue;
ans[i+(1<<j)][(k*10+(s[j]-'0'))%m]+=ans[i][k];
}
}
}
long long out=ans[(1<<len)-1][0];
for(int i=0;i<=9;i++)
out/=fac(tool[i]);
cout<<out<<'\n';
return 0;
}