约数之和其中数论的作用

AcWing

1.约数之和

在这里插入图片描述

对于这一题,只能说不会,其中牵扯到了数论中的约数之和的问题

首先是对于该题的分解的过程与思路
在这里插入图片描述

快速幂模板

ll qmod(ll a, ll b) {
    ll sum = 1;
    while (b) {
        if (b & 1) sum = sum * a % mod; // 二进制位为1时,累乘结果
        a = a * a % mod; // 底数平方,准备下一位计算
        b >>= 1; // 右移一位,处理下一个二进制位
    }
    return sum;
}

在这里插入图片描述

质因数分解函数prime

void prime(ll x) {
    for (ll i = 2; i <= x / i; i++) { 
        if (x % i == 0) { 
            while (x % i == 0) { 
                primes[i]++; // 统计质因数i的指数
                x /= i; 
            }
        }
    }
    if (x > 1) primes[x]++; // 处理剩余大质数
}

在这里插入图片描述

等比数列求和函数sum

ll sum(ll p, ll k) {
    if (k == 1) return 1; // 递归边界:指数为1时,和为1(对应等比数列首项1)
    if (k % 2 == 0) { 
        // 偶数项:1 + p + p² + ... + p^k = (1 + p^(k/2)) * (1 + p + ... + p^(k/2 - 1)) 
        return (qmod(p, k / 2) + 1) * sum(p, k / 2) % mod; 
    }
    // 奇数项:1 + p + ... + p^k = (1 + p^(k-1)) + (1 + p + ... + p^(k-2)) 
    return (qmod(p, k - 1) + sum(p, k - 1)) % mod; 
}

推理过程:
在这里插入图片描述

在这里插入图片描述

主函数

void solve() {
    ll a, b;
    cin >> a >> b;
    prime(a); // 分解A的质因数
    ll ans = 1;
    for (auto i : primes) { 
        ll p = i.first, k = i.second * b; // 质因数p,对应指数c*B
        ans = ans * sum(p, k + 1) % mod; // 累乘各质因数的等比数列和
    }
    if (a == 0) ans = 0; // 特殊情况:A=0时,0^B(B>0)无意义,结果为0
    cout << ans << endl;
}

在这里插入图片描述

在这里插入图片描述

完整代码

#include<bits/stdc++.h>
using namespace std;
#define IOS ios::sync_with_stdio(0),cin.tie(0),cout.tie(0) // 加速输入输出
#define ll long long
#define endl '\n'

const ll N=1e6+10;
const ll mod=9901;          // 结果取模 9901
unordered_map<ll,ll> primes; // 存储质因数分解结果

// 快速幂:计算 a^b % mod
ll qmod(ll a, ll b) {
    ll res = 1;
    while(b) {
        if(b & 1) res = res * a % mod;
        a = a * a % mod;
        b >>= 1;
    }
    return res;
}

// 质因数分解:将 x 分解为质因数及其指数
void prime(ll x) {
    for(ll i=2; i<=x/i; i++) {
        while(x % i == 0) {
            primes[i]++;
            x /= i;
        }
    }
    if(x > 1) primes[x]++; // 处理剩余的质因数
}

// 等比数列求和:计算 1 + p + p^2 + ... + p^(k-1) % mod
ll sum(ll p, ll k) {
    if(k == 1) return 1;
    if(k % 2 == 0) {
        return (qmod(p, k/2) + 1) * sum(p, k/2) % mod;
    }
    return (qmod(p, k-1) + sum(p, k-1)) % mod;
}

// 主函数:计算 A^B 的约数之和 % 9901
void solve() {
    ll a, b;
    cin >> a >> b;
    prime(a);       // 分解 A 的质因数
    
    ll ans = 1;
    for(auto [p, c] : primes) {
        ll k = c * b; // A^B 中质因数 p 的指数
        ans = ans * sum(p, k + 1) % mod; // 累乘每个质因数的等比数列和
    }
    
    if(a == 0) ans = 0; // 特殊处理 A=0 的情况
    cout << ans << endl;
}

signed main() {
    IOS;
    solve();
    return 0;
}

知识补充(数论)

约数和公式

在这里插入图片描述

核心原理:

er-images%5Cimage-20250715122000954.png&pos_id=img-HQAiwtKS-1752553555556)

例子:

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值