二叉堆是一种特殊的完全二叉树结构,它满足堆性质。
定义与性质
定义:二叉堆是完全二元树(二叉树)或者是近似完全二元树(二叉树),它满足堆性质。对于每个节点i,其子节点的值(或关键字)要么都小于等于节点i的值(称为最小堆),要么都大于等于节点i的值(称为最大堆)。
性质:结构性质:二叉堆是一棵完全二叉树,除了最后一层外,其他层的节点都是满的,且最后一层的节点都靠左对齐。堆性质:对于每个节点i,其子节点的值满足最小堆或最大堆的要求。
类型
最大堆:父节点的键值总是大于或等于任何一个子节点的键值。最大堆的最大元素位于堆顶。
最小堆:父节点的键值总是小于或等于任何一个子节点的键值。最小堆的最小元素位于堆顶。
实现方式
二叉堆通常通过数组来实现,以便于存储和访问。数组中的元素按照完全二叉树的顺序排列,父节点和子节点之间的索引关系可以通过简单的算术运算得出。
操作
插入操作:将新元素添加到数组的末尾。通过上浮操作(percolate up)调整堆结构,以满足堆性质。上浮操作是将新插入的元素与其父节点进行比较,如果新元素大于父节点(在最大堆中),则交换两者的位置,继续向上比较,直到满足堆性质或到达堆顶。
删除操作:通常删除堆顶元素(即数组的第一个元素)。用数组的最后一个元素替换堆顶元素。通过下沉操作(percolate down)调整堆结构。下沉操作是将替换后的堆顶元素与其子节点进行比较,如果堆顶元素小于子节点(在最大堆中),则与较大的子节点交换位置,继续向下比较,直到满足堆性质或到达叶子节点。
应用场景
优先队列:二叉堆是实现优先队列的理想数据结构。在优先队列中,元素的优先级由它们的