- 平行板电容器的电容
C=ε0Sd C=\frac{\varepsilon_0S}{d}C=dε0S - 电容,即容电存储电荷的容器,只要一个物体能存储电荷即可视为电容
- 孤立导体的电容
- 静电屏蔽与电容
- 这可以帮助理解为何平行板电容器计算电容的 qqq 只算一个极板上的电荷,平行板电容可以看作上面装置拍平得来
- 电容和水罐子类比
- 求均匀带正电的无限大平面的场强分布,设电荷面密度为 σe\sigma_eσe
- 运用高斯定理,做高斯面
- 运用高斯定理,做高斯面
- 先计算电通量,设底面积为 SSS,则 ΦE两底=ES+ES=2ES,ΦE侧=0\Phi_{E两底}=ES+ES=2ES,\Phi_{E侧}=0ΦE两底=ES+ES=2ES,ΦE侧=0,通过整个高斯面的电通量为
ΦE=ΦE两底+ΦE侧=2ES \Phi_E=\Phi_{E两底}+\Phi_{E侧}=2ESΦE=ΦE两底+ΦE侧=2ES - 带电平面的电荷面密度为 σe\sigma_eσe,高斯面内包含的电荷为 σeS\sigma_eSσeS
ΦE=σeSε0 \Phi_E=\frac{\sigma_eS}{\varepsilon_0}ΦE=ε0σeS - 均匀带正电的无限大平面的场强
E=σe2ε0E=\frac{\sigma_e}{2\varepsilon_0}E=2ε0σe
- 来自于赵凯华,陈熙谋的《电磁学》