Where-What Network 1: “Where” and “What” Assist Each Other Through Top-down Connections笔记

本文探讨了Drweng在WWN1至WWN4系列论文中关于多层双向连接的更新计算方法,特别是在早期WWN版本中如何通过自底向上与自上而下的路径实现信息传递,并解释了为何后续的DN版本放弃了多层连接,以及WWN1中未使用卷积输入的原因。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dr weng 后来的DN版本里面的idea,其实在WWN1中就已经提到过了。Attention does not only need bottom-up saliency-based cues,but also top-down target-dependant signals,这也是后来DN 中引入注意力的原因。

Q:  老板问我老版本的DN采用多层的双向连接,是如何进行更新计算的?为什么现在的DN版本抛弃的以前的多层连接?WWN1为什么输入没有用卷积这些问题?

A:我下来去Dr weng的主页下载了他public的历史paper,从 WWN1-WWN4,从里面我找到了一些灵感和答案。

对于多层WWN的更新方式,这张图里面是WWN早期版本的结构图。图中的V2可以看做是early levels of visual hierarchy.其中的两条通路,一条是V2->PP->LM ,另一条是V2->IT->TM.其中IT(Inferotemporal 翻译为颞下皮层),PP(Posterior Parietal翻译为后顶叶区)。WWN4的V2区域有局部和全局的输入,决定V2中神经元输入是全局还是局部图像取决于神经元的在V2中的location.

step1-5是具体的计算更新过程,其中X是自底向上的输入,V是自底向上的权重。 Z是自上而下的输入,M是自上而下的权重。θ是参数,作用是control sparsity and the direction of information flow.

 

下面这两个图对着看就可以理解什么是paired,解释paired含义见WWN3

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值