(C语言)P1002 [NOIP2002 普及组] 过河卒

[NOIP2002 普及组] 过河卒

一、题目描述

棋盘上 AAA 点有一个过河卒,需要走到目标 BBB 点。卒行走的规则:可以向下、或者向右。同时在棋盘上 CCC 点有一个对方的马,该马所在的点和所有跳跃一步可达的点称为对方马的控制点。因此称之为“马拦过河卒”。

棋盘用坐标表示,AAA(0,0)(0, 0)(0,0)BBB(n,m)(n, m)(n,m),同样马的位置坐标是需要给出的。

现在要求你计算出卒从 AAA 点能够到达 BBB 点的路径的条数,假设马的位置是固定不动的,并不是卒走一步马走一步。

二、输入格式

一行四个正整数,分别表示 BBB 点坐标和马的坐标。

三、输出格式

一个整数,表示所有的路径条数。

四、样例输入

6 6 3 3

五、样例输出

6

六、提示

对于 100%100 \%100% 的数据,1≤n,m≤201 \le n, m \le 201n,m200≤0 \le0 马的坐标 ≤20\le 2020

七、代码

#include <stdio.h>
long long f1[40][40];
long long f2[40][40];
int n, m, a, b;
void sign(int x, int y) {
	f2[x][y] = 1;
	f2[x - 1][y - 2] = 1;
	f2[x - 1][y + 2] = 1;
	f2[x - 2][y - 1] = 1;
	f2[x - 2][y + 1] = 1;
	f2[x + 1][y + 2] = 1;
	f2[x + 1][y - 2] = 1;
	f2[x + 2][y + 1] = 1;
	f2[x + 2][y - 1] = 1;
}

int main() {
	scanf_s("%d%d%d%d", &n, &m, &a, &b);
	//标记一下马的位置
	sign(a , b);
	f1[1][0] = 1;
	for (int i = 1; i <= n+1; i++)
	{
		for (int j = 1; j <= m+1; j++)
		{
			f1[i][j] = f1[i - 1][j] + f1[i][j - 1];
			if (f2[i - 1][j - 1]) //如果被标记过,则赋值为0
			{
				f1[i][j] = 0;
			}
		}
	}
	printf("%ld",f1[n + 1][m + 1]);
}

八、思路

  • 首先我们将整个棋盘记作一个二维数组,注意二维数组的类型应当为长整型long long,否则可能会超出!
long long f1[40][40];
long long f2[40][40];
  • 由题意我们可以知道,马所在的点和马所有跳跃一步可达的点都是卒不可以走的点
  • 对此我们可以定义一个方法,利用已知的马走日的规律,将马所在的位置以及马可到达的位置,标记为1,方便后续操作
    在这里插入图片描述
void sign(int x, int y) {
	f2[x][y] = 1;
	f2[x - 1][y - 2] = 1;
	f2[x - 1][y + 2] = 1;
	f2[x - 2][y - 1] = 1;
	f2[x - 2][y + 1] = 1;
	f2[x + 1][y + 2] = 1;
	f2[x + 1][y - 2] = 1;
	f2[x + 2][y + 1] = 1;
	f2[x + 2][y - 1] = 1;
}
  • 准备工作做好了之后,就可以进入本题的核心部分啦,如何计算路径的条数呢?我们已经知道了要到达的B点的坐标,以及卒开始的位置(0,0),本题带有一点小学奥数题的味道了
  • 就以下图为例,假设只能向下向右走,计算节点A到达节点B有多少条路径,很显然有两条路径

在这里插入图片描述

  • 再以下图为例,假设只能向下向右走,计算节点1到达节点9有多少条路径,只需从节点2开始,依次计算并累加上一个节点到此节点的路径(图中红色数字就是到对应节点的路径条数;例如:节点1到5的路径条数=节点1到2的路径条数+节点1到3的路径条数)

在这里插入图片描述

  • 本题的思路与此思路相似,想知道到节点9的路径数,就需要知道到节点7和8的路径数,一步一步向前推,但注意:与此不同的是要去掉马所在的点和马所有跳跃一步可达的点,即将这些点标记出来,不去遍历这些点。
int main() {
	scanf_s("%d%d%d%d", &n, &m, &a, &b);
	//标记一下马的位置
	sign(a , b);
	f1[1][0] = 1;//表示初始的点,未被标记过
	for (int i = 1; i <= n+1; i++)//i从1开始,对应图的X坐标,X坐标最大为n+1
	{
		for (int j = 1; j <= m+1; j++)//j从1开始,对应图的Y坐标,Y坐标最大为m+1
		{
			f1[i][j] = f1[i - 1][j] + f1[i][j - 1];//当前遍历到的节点的路径数 = 此节点的左边节点路与上边节点的径数之和
			if (f2[i - 1][j - 1]) //如果被标记过,则赋值为0
			{
				f1[i][j] = 0;
			}
		}
	}
	printf("%ld",f1[n + 1][m + 1]);
}
评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

呦呦呦欸哟哟

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值