机器学习——“奥卡姆剃刀”原理

本文探讨了机器学习中的简单性原则,即奥卡姆剃刀原理。在算法选择及模型选择时,倾向于使用更简单的方法,只要它能有效地解释数据。文章提及了正则化作为实现这一原则的一种手段。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

百科:切勿浪费较多东西去做,用较少的东西,同样可以做好的事情。"

简 单 性 原 则

(1)在机器学习中选择算法时,其含义是:在其他条件一样的情况下,选择简单的那个
(2)李航《统计学方法》一书中,在应用于模型选择时可以理解为:在所有可能选择的模型中,能够很好地解释已知数据并且十分简单才是最好的模型,也就是应该选择的模型。正则化就符合奥卡姆剃刀原理。

转自
(1条消息)机器学习——“奥卡姆剃刀”原理_人工智能_YlcMeng的博客-CSDN博客
https://blog.csdn.net/YlcMeng/article/details/95242213

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值