Apache Celeborn 在B站的生产实践

背景介绍

Shuffle 演进

随着B站业务的飞速发展,数据规模呈指数级增长,计算集群也逐步从单机房扩展到多机房部署模式。多个业务线依托大数据平台驱动核心业务,大数据系统的高效性与稳定性成为公司业务发展的重要基石。如图1,目前在大数据基础架构下,我们主要采用 Spark、Flink、Presto 以及 Hive 作为计算引擎支撑各类复杂业务场景需求,离线计算集群基本每天运行30+万左右的 Spark 作业,包括任务调度平台的 ETL 任务、Kyuubi 提交的 Adhoc 作业等,其作业的 Shuffle 数据规模能够达到30PB以上,同时单个作业的 Shuffle 量最大规模有几百TB。同时 Shuffle 算子作为大数据计算引擎中间数据处理最重要的算子,Shuffle 的稳定性关系着线上大量离线作业的可靠性和性能。因此,对于海量的 Shuffle 中间数据和复杂多变的计算环境来说,保证 Shuffle 数据处理的稳定性对线上作业的稳定性和运行效率尤为重要。

图片

图1:B站大数据基础架构图

  • Local Shuffle 的早期引入

前期我们采用 Spark 社区官方提供 External Shuffle

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

银行金融科技

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值