题目及测试
package pid011;
/* 盛最多水的容器
给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) 。
在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2。
示例:
输入: [1,8,6,2,5,4,8,3,7]
输出: 49
}*/
public class main {
public static void main(String[] args) {
int[][] testTable = {{1,8,6,2,5,4,8,3,7},{1,1,2,2,5,6,7,7},{1,2,3,5},{1,1,1,1}};
for (int[] ito : testTable) {
test(ito);
}
}
private static void test(int[] ito) {
Solution solution = new Solution();
int rtn;
long begin = System.currentTimeMillis();
for (int i = 0; i < ito.length; i++) {
System.out.print(ito[i]+" ");
}//开始时打印数组
rtn = solution.maxArea(ito);//执行程序
long end = System.currentTimeMillis();
System.out.println("rtn=" + rtn);
/*for (int i = 0; i < rtn; i++) {
System.out.print(ito[i]+" ");
}//打印结果几数组
*/ System.out.println();
System.out.println("耗时:" + (end - begin) + "ms");
System.out.println("-------------------");
}
}
解法1(成功,87ms,极慢)
使用归并的方法
package pid011;
import java.util.ArrayList;
import java.util.List;
public class Solution {
public int maxArea(int[] height) {
int length=height.length;
// 结果是(j-i)*(min(height[j],height[i]))
return calArea(height, 0, length-1);
}
/** 计算[begin到end]的最大area
* @param height
* @param begin
* @param end
* @return
*/
public int calArea(int[] height,int begin,int end){
if(begin>=end){
return 0;
}
if(begin+1==end){
return getArea(height, begin, end);
}
int mid=(end+begin)/2;
int left=calArea(height, begin, mid);
int right=calArea(height, mid+1, end);
int split=calSplitArea(height, begin, end, mid);
return Math.max(left, Math.max(right,split));
}
/** 计算左边在[begin,mid],右边在[mid+1,end]的最大area
* @param height
* @param begin
* @param end
* @param mid
* @return
*/
public int calSplitArea(int[] height,int begin,int end,int mid){
List<Integer> leftPeak=new ArrayList<Integer>();
List<Integer> rightPeak=new ArrayList<Integer>();
// 找到左边的峰,特征height[i]>height[i-1]
for(int i=mid;i>=begin+1;i--){
if(height[i]>height[i-1]){
leftPeak.add(i);
}
}
leftPeak.add(begin);
// 找到左边的峰,特征height[i]>height[i+1]
for(int i=mid+1;i<=end-1;i++){
if(height[i]>height[i+1]){
rightPeak.add(i);
}
}
rightPeak.add(end);
int max=0;
for(int i=0;i<leftPeak.size();i++){
for(int j=0;j<rightPeak.size();j++){
max=Math.max(max, getArea(height, leftPeak.get(i), rightPeak.get(j)));
}
}
return max;
}
public int getArea(int[] height,int i,int j){
return (j-i)*(Math.min(height[j],height[i]));
}
}
解法2(别人的)
这种方法背后的思路在于,两线段之间形成的区域总是会受到其中较短那条长度的限制。此外,两线段距离越远,得到的面积就越大。
我们在由线段长度构成的数组中使用两个指针,一个放在开始,一个置于末尾。 此外,我们会使用变量 maxarea 来持续存储到目前为止所获得的最大面积。
在每一步中,我们会找出指针所指向的两条线段形成的区域,更新 maxarea,并将指向较短线段的指针向较长线段那端移动一步。
最初我们考虑由最外围两条线段构成的区域。现在,为了使面积最大化,我们需要考虑更长的两条线段之间的区域。
如果我们试图将指向较长线段的指针向内侧移动,矩形区域的面积将受限于较短的线段而不会获得任何增加。
但是,在同样的条件下,移动指向较短线段的指针尽管造成了矩形宽度的减小,但却可能会有助于面积的增大。因为移动较短线段的指针会得到一条相对较长的线段,这可以克服由宽度减小而引起的面积减小。
由于面积取决于边长短的那一端假设为m,所以要想得到比当前更大的面积,边长短的那一端必须舍弃,因为如果不舍弃,高最大就是m,而随着指针的移动宽会一直减小,因此面积只会越来越小。
public class Solution {
public int maxArea(int[] height) {
int maxarea = 0, l = 0, r = height.length - 1;
while (l < r) {
maxarea = Math.max(maxarea, Math.min(height[l], height[r]) * (r - l));
if (height[l] < height[r])
l++;
else
r--;
}
return maxarea;
}
}