leetcode-011-盛最多水的容器-java

题目及测试

package pid011;
/* 盛最多水的容器

给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) 。
在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。

说明:你不能倾斜容器,且 n 的值至少为 2。
示例:

输入: [1,8,6,2,5,4,8,3,7]
输出: 49
}*/
public class main {
	
	public static void main(String[] args) {
		int[][] testTable = {{1,8,6,2,5,4,8,3,7},{1,1,2,2,5,6,7,7},{1,2,3,5},{1,1,1,1}};
		for (int[] ito : testTable) {
			test(ito);
		}
	}
		 
	private static void test(int[] ito) {
		Solution solution = new Solution();
		int rtn;
		long begin = System.currentTimeMillis();
		for (int i = 0; i < ito.length; i++) {
		    System.out.print(ito[i]+" ");
		}//开始时打印数组
		rtn = solution.maxArea(ito);//执行程序
		long end = System.currentTimeMillis();		
		System.out.println("rtn=" + rtn);
		/*for (int i = 0; i < rtn; i++) {
		    System.out.print(ito[i]+" ");
		}//打印结果几数组
*/		System.out.println();
		System.out.println("耗时:" + (end - begin) + "ms");
		System.out.println("-------------------");
	}

}

解法1(成功,87ms,极慢)

使用归并的方法

package pid011;

import java.util.ArrayList;
import java.util.List;

public class Solution {
	public int maxArea(int[] height) {
	    int length=height.length;
	    // 结果是(j-i)*(min(height[j],height[i]))
		return calArea(height, 0, length-1);
    }
	/** 计算[begin到end]的最大area
	 * @param height
	 * @param begin
	 * @param end
	 * @return
	 */
	public int calArea(int[] height,int begin,int end){
		if(begin>=end){
			return 0;
		}
		if(begin+1==end){
			return getArea(height, begin, end);
		}
		int mid=(end+begin)/2;
		int left=calArea(height, begin, mid);
		int right=calArea(height, mid+1, end);
		int split=calSplitArea(height, begin, end, mid);
		return Math.max(left,  Math.max(right,split));
	}
	
	/** 计算左边在[begin,mid],右边在[mid+1,end]的最大area
	 * @param height
	 * @param begin
	 * @param end
	 * @param mid
	 * @return
	 */
	public int calSplitArea(int[] height,int begin,int end,int mid){
		List<Integer> leftPeak=new ArrayList<Integer>();
		List<Integer> rightPeak=new ArrayList<Integer>();
		// 找到左边的峰,特征height[i]>height[i-1]
		for(int i=mid;i>=begin+1;i--){
			if(height[i]>height[i-1]){
				leftPeak.add(i);
			}
		}
		leftPeak.add(begin);
		// 找到左边的峰,特征height[i]>height[i+1]
		for(int i=mid+1;i<=end-1;i++){
			if(height[i]>height[i+1]){
				rightPeak.add(i);
			}
		}
		rightPeak.add(end);
		int max=0;
		for(int i=0;i<leftPeak.size();i++){
			for(int j=0;j<rightPeak.size();j++){
				max=Math.max(max, getArea(height, leftPeak.get(i), rightPeak.get(j)));
			}
		}				
		return max;
	}
	
	
	public int getArea(int[] height,int i,int j){
		return (j-i)*(Math.min(height[j],height[i]));
	}

}

解法2(别人的)

这种方法背后的思路在于,两线段之间形成的区域总是会受到其中较短那条长度的限制。此外,两线段距离越远,得到的面积就越大。

我们在由线段长度构成的数组中使用两个指针,一个放在开始,一个置于末尾。 此外,我们会使用变量 maxarea 来持续存储到目前为止所获得的最大面积。

在每一步中,我们会找出指针所指向的两条线段形成的区域,更新 maxarea,并将指向较短线段的指针向较长线段那端移动一步。

最初我们考虑由最外围两条线段构成的区域。现在,为了使面积最大化,我们需要考虑更长的两条线段之间的区域

如果我们试图将指向较长线段的指针向内侧移动,矩形区域的面积将受限于较短的线段而不会获得任何增加。

但是,在同样的条件下,移动指向较短线段的指针尽管造成了矩形宽度的减小,但却可能会有助于面积的增大。因为移动较短线段的指针会得到一条相对较长的线段,这可以克服由宽度减小而引起的面积减小。

由于面积取决于边长短的那一端假设为m,所以要想得到比当前更大的面积,边长短的那一端必须舍弃,因为如果不舍弃,高最大就是m,而随着指针的移动宽会一直减小,因此面积只会越来越小。

public class Solution {
    public int maxArea(int[] height) {
        int maxarea = 0, l = 0, r = height.length - 1;
        while (l < r) {
            maxarea = Math.max(maxarea, Math.min(height[l], height[r]) * (r - l));
            if (height[l] < height[r])
                l++;
            else
                r--;
        }
        return maxarea;
    }
}

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值