题目及测试
package sword030;
/* 题目:输入n个整数,找出其中最小的k个数。
* 例如输入4、5、1、6、2、7、3、8这8个数字,则最小的4个数字是1、2、3、4。
*/
import java.util.List;
public class main {
public static void main(String[] args) {
int[][] testTable = {{1,3,4,2,2,3},{1,1,1,1,2}};
int[] testTable2={3,3};
for (int i=0;i<testTable.length;i++) {
test(testTable[i],testTable2[i]);
}
}
private static void test(int[] ito,int ito2) {
List<Integer> rtn;
Solution solution=new Solution();
long begin = System.currentTimeMillis();
for (int i = 0; i < ito.length; i++) {
System.out.print(ito[i]+" ");
}
System.out.println();
//开始时打印数组
System.out.println("ito2="+ito2);
rtn = solution.kSmallest(ito,ito2);//执行程序
long end = System.currentTimeMillis();
System.out.println(ito + ": rtn=" );
System.out.println( " rtn=" );
for (int i = 0; i < rtn.size(); i++) {
System.out.print(rtn.get(i)+" ");
}//打印结果几数组
System.out.println();
System.out.println("耗时:" + (end - begin) + "ms");
System.out.println("-------------------");
}
}
解法1(成功)
这道题最简单的思路莫过于把输入的n个整数排序,排序之后位于最前面的k个数就是最小的k个数。这种思路的时间复杂度是O(nlogn)。
解法一:O(n)的算法,只有当我们可以修改输入的数组时可用
我们同样可以基于Partition函数来解决这个问题。如果基于数组的第k个数字来调整,使得比第k个数字小的所有数字都位于数组的左边,比第k个数字大的所有数字都位于数组的右边。这样调整之后,位于数组中左边的k个数字就是最小的k个数字。
解法二:O(nlogk)的算法,特别适用处理海量数据
我们可以先创建一个大小为k的数据容器来存储最小的k个数字,接下来我们每次从输入的n个整数中读入一个数。如果容器中已有数字少于k个,则直接把这次读入的整数放入容器中;如果容器中已有k个数字了,也就是容器已满,此时我们不能再插入新的数字了而只能替换已有的数字。找出这已有的k个数中的最大值,然后拿这次待插入的整数和最大值进行比较。如果待插入的值比当前已有的最小值小,则用这个数替换当前已有的最大值;如果待插入的值比当前已有的最大值还大,那么这个数不可能是最小的k个整数之一,于是我们可以抛弃这个整数。
因此当容器满了之后,我们要做3件事;一是在k个整数中找到最大数;二是有可能在这个容器中删除最大数;三是有可能要插入一个新的数字。如果用一个二叉树来实现这个容器,那么我们能在O(logk)时间内实现这三步操作。因此对于n个输入的数字而言,总的时间效率是O(nlogk).
我们可以选择用不同的二叉树来实现这个数据容器。由于每次都需要找到k个整数中的最大数字,我们很容易想到用最大堆。在最大堆中,根节点的值总是大于它的子树中的任意结点的值。于是我们每次可以在O(1)得到已有的k个数字中的最大值,但需要O(logk)时间完成删除及插入操作。
package sword030;
import java.util.*;
class Solution {
public List<Integer> kSmallest(int[] nums, int k) {
List<Integer> result = new ArrayList<Integer>();
int length = nums.length;
if(length == 0) {
return result;
}
if(length < k) {
return result;
}
int begin = 0;
int end = length - 1;
while(true) {
int mid = partition(nums, begin, end);
if(mid == k || mid == k - 1) {
break;
}
if(mid > k) {
end = mid - 1;
}else {
begin = mid + 1;
}
}
for(int i=0;i<k;i++) {
result.add(nums[i]);
}
return result;
}
private void swap(int[] nums, int i, int j) {
int temp = nums[i];
nums[i] = nums[j];
nums[j] = temp;
}
// 从begin到end(都包括),进行分割,返回中间点,左边的小于等于它,右边的大于等于它
private int partition(int[] nums, int begin, int end) {
if (begin == end) {
return begin;
}
int baseNum = nums[begin];
int base = begin;
int i = begin;
int j = end;
while (i <= j) {
while (i <= j) {
int now = nums[j];
if(now>= baseNum) {
j--;
continue;
}else {
swap(nums, base, j);
base = j;
break;
}
}
while (i <= j) {
int now = nums[i];
if(now <= baseNum) {
i++;
continue;
}else {
swap(nums, i, base);
base = i;
break;
}
}
}
nums[i] = baseNum;
return i;
}
}