leetcode-105- 从前序与中序遍历序列构造二叉树(construct binary tree from preorder and inorder traversal)-java

本文详细解析了如何利用前序遍历与中序遍历序列构造二叉树的方法,介绍了三种不同的实现策略,包括直接搜索法、哈希映射优化法及递归构造法,深入探讨了每种方法的优缺点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目及测试

package pid105;


/*从前序与中序遍历序列构造二叉树

根据一棵树的前序遍历与中序遍历构造二叉树。

注意:
你可以假设树中没有重复的元素。

例如,给出

前序遍历 preorder = [3,9,20,15,7]
中序遍历 inorder = [9,3,15,20,7]

返回如下的二叉树:

    3
   / \
  9  20
    /  \
   15   7





}*/
public class main {
	
	public static void main(String[] args) {
		int[] ito=new int[]{3,9,20,15,7};
		int[] ito2=new int[]{9,3,15,20,7};
		//Object[] x=new Object[]{3,9,20,null,null,15,7};	
		//BinaryTree tree=new BinaryTree(x);
		//tree.printTree(tree.root);
		test(ito,ito2);
		
		
	}
		 
	private static void test(int[] ito,int[] ito2) {
		Solution solution = new Solution();
		TreeNode rtn;
		for(int now:ito){
			System.out.print(now+" ");
		}
		System.out.println();
		for(int now:ito2){
			System.out.print(now+" ");
		}
		System.out.println();
		long begin = System.currentTimeMillis();
		rtn = solution.buildTree(ito,ito2);//执行程序
		long end = System.currentTimeMillis();		
		System.out.println("rtn=" );
		new BinaryTree(1).printTree(rtn);
		System.out.println();
		System.out.println("耗时:" + (end - begin) + "ms");
		System.out.println("-------------------");
	}

}

解法1(成功,31ms,较慢)

从前序遍历可以得到该段的root,从中序遍历找到root,root的左右是root的左右节点,就可以按这个方法递归出这个节点的左右子节点。

生成左子树和右子树就可以递归的进行了。

    public TreeNode buildTree(int[] preorder, int[] inorder) {
        int length=preorder.length;
        if(length==0||length!=inorder.length){
        	return null;
        }
    	return buildTreeNodeByPreAndInOrder(preorder, inorder, 0, length-1, 0, length-1);
    }	
	
	public TreeNode buildTreeNodeByPreAndInOrder(int[] preorder, int[] inorder,
			int preFirst,int preLast,int inFirst,int inLast){
		// 先校验返回的是否为null
		if(preLast-preFirst<0){
			return null;
		}
		// 根据前序遍历,得到中间节点的值,并创建中间节点
		int midNum=preorder[preFirst];
		TreeNode result=new TreeNode(midNum);
		// 在中序遍历找到midNum的位置
		int inMid=0;
		for(int i=inFirst;i<=inLast;i++){
			if(inorder[i]==midNum){
				inMid=i;
				break;
			}
		}
		// 中间节点的左子树的长度为inMid-inFirst
		int leftSize=inMid-inFirst;
		// 右子树长度为inLast-inMid
		int RightSize=inLast-inMid;
		// 前序遍历,左子树范围为[preFirst+1,preFirst+leftSize],,右子树范围为[preFirst+leftSize+1,preLast]
		// 中序遍历,左子树范围为[inFirst,inMid-1],右子树范围为[inMid+1,inLast]
		result.left=buildTreeNodeByPreAndInOrder(preorder, inorder, preFirst+1, preFirst+leftSize, inFirst, inMid-1);
		result.right=buildTreeNodeByPreAndInOrder(preorder, inorder, preFirst+leftSize+1, preLast, inMid+1, inLast);				
		return result;
	}

 

解法2(成功,3ms,较快)

上述的做法有个缺点,每次都要去中序遍历中,查找中间节点的位置,因为数字不重复,可以将中序遍历放入hashmap,把中序遍历数组的每个元素的值和下标存起来,这样寻找根节点的位置就可以直接得到了。

	HashMap<Integer, Integer> mapInOrder = null;
	
    public TreeNode buildTree(int[] preorder, int[] inorder) {
        int length=preorder.length;
        if(length==0||length!=inorder.length){
        	return null;
        }
        mapInOrder = new HashMap<Integer, Integer>(length);
        for(int i=0;i<length;i++) {
        	mapInOrder.put(inorder[i], i);
        }
    	return buildTreeNodeByPreAndInOrder(preorder, inorder, 0, length-1, 0, length-1);
    }	
	
	public TreeNode buildTreeNodeByPreAndInOrder(int[] preorder, int[] inorder,
			int preFirst,int preLast,int inFirst,int inLast){
		// 先校验返回的是否为null
		if(preLast-preFirst<0){
			return null;
		}
		// 根据前序遍历,得到中间节点的值,并创建中间节点
		int midNum=preorder[preFirst];
		TreeNode result=new TreeNode(midNum);
		// 在中序遍历找到midNum的位置
		int inMid=mapInOrder.get(midNum);
		// 中间节点的左子树的长度为inMid-inFirst
		int leftSize=inMid-inFirst;
		// 右子树长度为inLast-inMid
		int RightSize=inLast-inMid;
		// 前序遍历,左子树范围为[preFirst+1,preFirst+leftSize],,右子树范围为[preFirst+leftSize+1,preLast]
		// 中序遍历,左子树范围为[inFirst,inMid-1],右子树范围为[inMid+1,inLast]
		result.left=buildTreeNodeByPreAndInOrder(preorder, inorder, preFirst+1, preFirst+leftSize, inFirst, inMid-1);
		result.right=buildTreeNodeByPreAndInOrder(preorder, inorder, preFirst+leftSize+1, preLast, inMid+1, inLast);				
		return result;
	}

解法3(别人的)

用pre变量保存当前要构造的树的根节点,从根节点开始递归的构造左子树和右子树,in变量指向当前根节点可用数字的开头,然后对于当前pre有一个停止点stop,从in到stop表示要构造的树当前的数字范围。

public TreeNode buildTree(int[] preorder, int[] inorder) {
    return buildTreeHelper(preorder,  inorder, (long)Integer.MAX_VALUE + 1);
}
int pre = 0;
int in = 0;
private TreeNode buildTreeHelper(int[] preorder, int[] inorder, long stop) {
    //到达末尾返回 null
    if(pre == preorder.length){
        return null;
    }
    //到达停止点返回 null
    //当前停止点已经用了,in 后移
    if (inorder[in] == stop) {
        in++;
        return null;
    }
    int root_val = preorder[pre++];
    TreeNode root = new TreeNode(root_val);   
    //左子树的停止点是当前的根节点
    root.left = buildTreeHelper(preorder,  inorder, root_val);
    //右子树的停止点是当前树的停止点
    root.right = buildTreeHelper(preorder, inorder, stop);
    return root;
}

      3
    /   \
   9     7
  / \
 20  15
 
前序遍历数组和中序遍历数组
preorder = [ 3, 9, 20, 15, 7 ]
inorder = [ 20, 9, 15, 3, 7 ]   
p 代表 pre,i 代表 in,s 代表 stop

首先构造根节点为 3 的树,可用数字是 i 到 s
s 初始化一个树中所有的数字都不会相等的数,所以代码中用了一个 long 来表示
3, 9, 20, 15, 7 
^  
p
20, 9, 15, 3, 7
^              ^
i              s

考虑根节点为 3 的左子树,                考虑根节点为 3 的树的右子树,
stop 值是当前根节点的值 3                只知道 stop 值是上次的 s
新的根节点是 9,可用数字是 i 到 s 
不包括 s
3, 9, 20, 15, 7                       3, 9, 20, 15, 7                
   ^                                    
   p
20, 9, 15, 3, 7                       20, 9, 15, 3, 7                     
^          ^                                         ^
i          s                                         s

递归出口的情况
3, 9, 20, 15, 7 
       ^  
       p
20, 9, 15, 3, 7
^    
i   
s   
此时 in 和 stop 相等,表明没有可用的数字,所以返回 null,并且表明此时到达了某个树的根节点,所以 i 后移。

总之他的思想就是,不再从中序遍历中寻找根节点的位置,而是直接把值传过去,表明当前子树的结束点。不过总感觉还是没有 get 到他的点,in 和 stop 变量的含义也是我赋予的,对于整个算法也只是勉强说通,大家有好的想法可以和我交流。

 

 

 

 

 

 

 

### 如何用 C 语言通过前序遍历序遍历来构建二叉树LeetCode 的题目 **105. Construct Binary Tree from Preorder and Inorder Traversal** 中,目标是从给定的前序遍历 (`preorder`) 序遍历 (`inorder`) 构建一棵唯一的二叉树。以下是基于此问题的解决方案。 #### 方法概述 为了完成这一任务,可以采用递归的方法解决该问题。核心思路如下: -序遍历的第一个元素总是当前根节点- 利用这个根节点,在中序遍历序列中找到其位置 `index`,从而将中序遍历划分为左子树部分(位于索引左侧的部分)右子树部分(位于索引右侧的部分)。 - 对于每棵子,重复上述过程直至处理完毕所有节点。 这种方法的时间复杂度为 O(n),其中 n 是节点的数量[^3]。 #### 数据结构定义 首先需要定义一个表示二叉树节点的数据结构: ```c // 定义二叉树节点结构体 struct TreeNode { int val; struct TreeNode* left; struct TreeNode* right; }; ``` #### 实现代码 下面是完整的 C 语言实现代码: ```c #include <stdio.h> #include <stdlib> // 查找函数:用于在 inorder 数组中定位指定值的位置 int findIndex(int* inorder, int start, int end, int value) { for (int i = start; i <= end; ++i) { if (inorder[i] == value) return i; } return -1; // 如果未找到则返回错误码 } // 辅助递归函数 struct TreeNode* buildTreeHelper( int* preorder, int preStart, int preEnd, int* inorder, int inStart, int inEnd ) { if (preStart > preEnd || inStart > inEnd) return NULL; // 创建新节点并初始化 struct TreeNode* root = malloc(sizeof(struct TreeNode)); root->val = preorder[preStart]; // 在 inorder 数组中寻找根节点的位置 int index = findIndex(inorder, inStart, inEnd, preorder[preStart]); // 计算左子树长度 int leftSize = index - inStart; // 递归构造右子树 root->left = buildTreeHelper(preorder, preStart + 1, preStart + leftSize, inorder, inStart, index - 1); root->right = buildTreeHelper(preorder, preStart + leftSize + 1, preEnd, inorder, index + 1, inEnd); return root; } // 主调用接口 struct TreeNode* buildTree(int* preorder, int preorderSize, int* inorder, int inorderSize) { if (!preorder || !inorder || preorderSize != inorderSize) return NULL; return buildTreeHelper(preorder, 0, preorderSize - 1, inorder, 0, inorderSize - 1); } ``` #### 复杂度分析 - 时间复杂度:O(n)[^3],因为每个节点仅被访问一次。 - 空间复杂度:取决于递归栈的最大深度,最坏情况下可能达到 O(n)。 #### 测试案例 假设输入数据如下: ```plaintext Preorder: [3,9,20,15,7] Inorder : [9,3,15,20,7] ``` 可以通过以下方式测试程: ```c void printTree(struct TreeNode* node) { if (node == NULL) return; printf("%d ", node->val); printTree(node->left); printTree(node->right); } int main() { int preorder[] = {3, 9, 20, 15, 7}; int inorder[] = {9, 3, 15, 20, 7}; int size = sizeof(preorder)/sizeof(preorder[0]); struct TreeNode* root = buildTree(preorder, size, inorder, size); printTree(root); // 输出应为原前序遍历 return 0; } ``` 运行结果将是 `[3 9 20 15 7]`,这表明重建后的二叉树原始一致[^4]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值