在梯度提升树(Gradient Boosting)中,每一轮训练确实会增加一棵新的弱学习器(通常是决策树)。这种逐步添加弱学习器的方式是梯度提升的核心思想之一。以下是梯度提升树的训练过程的详细说明:
梯度提升树的训练过程
关于参数更新
- 本轮训练对前几轮参数的影响:
-
在梯度提升中,每一轮训练只添加一个新的弱学习器,而不会直接修改之前训练的弱学习器的参数。因此,前几轮的弱学习器的参数在后续轮次中不会被改变。
-
然而,每一轮训练都会调整整体模型的预测值,因为新添加的弱学习器会修正当前模型的残差。因此,虽然前几轮的弱学习器参数不变,但整体模型的预测会随着每一轮的迭代而逐步改进。
-
总结
-
每一轮训练都会增加一棵新的弱学习器:这是梯度提升的核心机制,通过逐步添加弱学习器来逐步减少模型的误差。
-
本轮训练不会直接改变前几轮的参数:每一轮训练只添加新的弱学习器,而不会修改之前弱学习器的参数。然而,整体模型的预测会随着每一轮的迭代而逐步改进。
这种逐步构建模型的方式使得梯度提升树在处理复杂数据时表现出色,同时也能有效避免过拟合。